Kafka到底有几个Offset?——Kafka核心之偏移量机制

简介: Kafka是由LinkIn开源的实时数据处理框架,目前已经更新到2.3版本。不同于一般的消息中间件,Kafka通过数据持久化和磁盘读写获得了极高的吞吐量,并可以不依赖Storm,SparkStreaming的流处理平台,自己进行实时的流处理。Kakfa的Offset机制是其最核心机制之一,由于API对于部分功能的实现,我们有时并没有手动去设置Offset,那么Kafka到底有几个Offset呢?

一、生产者Offset


首先,我们先来看生产者的offset,我们知道Kafka是通过生产者将消息发送给某一个topic,消费者再消费这个topic的消息,当然可能有多个生产者,多个消费者,还可能有消费者组的概念,这个稍后在讨论。

当生产者将消息发送给某一个topic时,要看有多少个分区,因为kafka是通过分区机制实现分布式的。

微信图片_20220525224737.png

 生产者offset

通过此图可以清晰的看到生产者的offset原理,不管是多少个生产者,还是我们规定了他们会写入哪一个分区,但只要他们写入的时候,一定是每一个分区都有一个offset,这个offset就是生产者的offset,同时也是这个分区的最新最大的offset。

有些时候我们在开发生产者代码时并没有指定某一个分区的offset,可能是我们使用的单分区,或者默认均匀的写入多个分区,这个工作kafka帮我们完成了。


二、消费者Offset


再来看消费者端offset,要稍微复杂一些。

微信图片_20220525224740.png

图 消费者offset

这是某一个分区的offset情况,我们已经知道生产者写入的offset是最新最大的值也就是12,而当Consumer A进行消费时,他从0开始消费,一直消费到了9,他的offset就记录在了9,Consumer B就纪录在了11。等下一次他们再来消费时,他们可以选择接着上一次的位置消费,当然也可以选择从头消费,或者跳到最近的记录并从“现在”开始消费。

这样即使有多个分区,消费者也能灵活使用。

微信图片_20220525224743.png

图 消费者组

消费者组的概念其实并不影响对offset的理解,上面的情况Consumer A,Consumer B如果是同组就不能同时消费一个分区的消息,不同组的消费者可以同时消费一个分区的消息。

还有一种offset的说法,就是consumer消费未提交时,本地是有另外一个offset的,这个offset不一定与集群中记录的offset一致。

所以,kafka每一个topic分区和生产者,消费者不同,是有多个offset的。

总结如下:

offset是指某一个分区的偏移量。

topic partition offset 这三个唯一确定一条消息。

生产者的offset其实就是最新的offset。

消费者的offset是他自己维护的,他可以选择分区最开始,最新,也可以记住他消费到哪了。

消费者组是为了不同组的消费者可以同时消费一个分区的消息。

相关文章
|
1月前
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
42 0
|
1月前
|
消息中间件 存储 分布式计算
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
92 0
|
1月前
|
消息中间件 SQL 分布式计算
大数据-62 Kafka 高级特性 主题 kafka-topics相关操作参数 KafkaAdminClient 偏移量管理
大数据-62 Kafka 高级特性 主题 kafka-topics相关操作参数 KafkaAdminClient 偏移量管理
33 6
|
1月前
|
消息中间件 存储 分布式计算
大数据-53 Kafka 基本架构核心概念 Producer Consumer Broker Topic Partition Offset 基础概念了解
大数据-53 Kafka 基本架构核心概念 Producer Consumer Broker Topic Partition Offset 基础概念了解
67 4
|
1月前
|
消息中间件 Java 大数据
Kafka ISR机制详解!
本文详细解析了Kafka的ISR(In-Sync Replicas)机制,阐述其工作原理及如何确保消息的高可靠性和高可用性。ISR动态维护与Leader同步的副本集,通过不同ACK确认机制(如acks=0、acks=1、acks=all),平衡可靠性和性能。此外,ISR机制支持故障转移,当Leader失效时,可从ISR中选取新的Leader。文章还包括实例分析,展示了ISR在不同场景下的变化,并讨论了其优缺点,帮助读者更好地理解和应用ISR机制。
54 0
Kafka ISR机制详解!
|
1月前
|
消息中间件 Java Kafka
Kafka ACK机制详解!
本文深入剖析了Kafka的ACK机制,涵盖其原理、源码分析及应用场景,并探讨了acks=0、acks=1和acks=all三种级别的优缺点。文中还介绍了ISR(同步副本)的工作原理及其维护机制,帮助读者理解如何在性能与可靠性之间找到最佳平衡。适合希望深入了解Kafka消息传递机制的开发者阅读。
185 0
|
3月前
|
消息中间件 Java Kafka
Kafka不重复消费的终极秘籍!解锁幂等性、偏移量、去重神器,让你的数据流稳如老狗,告别数据混乱时代!
【8月更文挑战第24天】Apache Kafka作为一款领先的分布式流处理平台,凭借其卓越的高吞吐量与低延迟特性,在大数据处理领域中占据重要地位。然而,在利用Kafka进行数据处理时,如何有效避免重复消费成为众多开发者关注的焦点。本文深入探讨了Kafka中可能出现重复消费的原因,并提出了四种实用的解决方案:利用消息偏移量手动控制消费进度;启用幂等性生产者确保消息不被重复发送;在消费者端实施去重机制;以及借助Kafka的事务支持实现精确的一次性处理。通过这些方法,开发者可根据不同的应用场景灵活选择最适合的策略,从而保障数据处理的准确性和一致性。
297 9
|
3月前
|
消息中间件 负载均衡 Java
揭秘Kafka背后的秘密!Kafka 架构设计大曝光:深入剖析Kafka机制,带你一探究竟!
【8月更文挑战第24天】Apache Kafka是一款专为实时数据处理及流传输设计的高效率消息系统。其核心特性包括高吞吐量、低延迟及出色的可扩展性。Kafka采用分布式日志模型,支持数据分区与副本,确保数据可靠性和持久性。系统由Producer(消息生产者)、Consumer(消息消费者)及Broker(消息服务器)组成。Kafka支持消费者组,实现数据并行处理,提升整体性能。通过内置的故障恢复机制,即使部分节点失效,系统仍能保持稳定运行。提供的Java示例代码展示了如何使用Kafka进行消息的生产和消费,并演示了故障转移处理过程。
52 3
|
3月前
|
消息中间件 Java Kafka
如何在Kafka分布式环境中保证消息的顺序消费?深入剖析Kafka机制,带你一探究竟!
【8月更文挑战第24天】Apache Kafka是一款专为实时数据管道和流处理设计的分布式平台,以其高效的消息发布与订阅功能著称。在分布式环境中确保消息按序消费颇具挑战。本文首先介绍了Kafka通过Topic分区实现消息排序的基本机制,随后详细阐述了几种保证消息顺序性的策略,包括使用单分区Topic、消费者组搭配单分区消费、幂等性生产者以及事务支持等技术手段。最后,通过一个Java示例演示了如何利用Kafka消费者确保消息按序消费的具体实现过程。
135 3
|
3月前
|
消息中间件 负载均衡 Java
"深入Kafka核心:探索高效灵活的Consumer机制,以Java示例展示数据流的优雅消费之道"
【8月更文挑战第10天】在大数据领域,Apache Kafka凭借其出色的性能成为消息传递与流处理的首选工具。Kafka Consumer作为关键组件,负责优雅地从集群中提取并处理数据。它支持消息的负载均衡与容错,通过Consumer Group实现消息的水平扩展。下面通过一个Java示例展示如何启动Consumer并消费数据,同时体现了Kafka Consumer设计的灵活性与高效性,使其成为复杂消费场景的理想选择。
123 4
下一篇
无影云桌面