肝了3天,整理了90个Pandas案例,强烈建议收藏!(下)

简介: 肝了3天,整理了90个Pandas案例,强烈建议收藏!(下)

46过滤索引中包含某字符串的行


import pandas as pd
df = pd.DataFrame({'DateOfBirth': ['1986-11-11', '1999-05-12', '1976-01-01',
                                   '1986-06-01', '1983-06-04', '1990-03-07',
                                   '1999-07-09'],
                   'State': ['NY', 'TX', 'FL', 'AL', 'AK', 'TX', 'TX']
                   },
                  index=['Jane', 'Pane', 'Aaron', 'Penelope', 'Frane',
                         'Christina', 'Cornelia'])
print(df)
print("\n---- Filter Index contains ane ----\n")
df.index = df.index.astype('str')
df1 = df[df.index.str.contains('ane')]
print(df1)

Output:

DateOfBirth State
Jane       1986-11-11    NY
Pane       1999-05-12    TX
Aaron      1976-01-01    FL
Penelope   1986-06-01    AL
Frane      1983-06-04    AK
Christina  1990-03-07    TX
Cornelia   1999-07-09    TX
---- Filter Index contains ane ----
      DateOfBirth State
Jane   1986-11-11    NY
Pane   1999-05-12    TX
Frane  1983-06-04    AK


47使用 AND 运算符过滤包含特定字符串值的行


import pandas as pd
df = pd.DataFrame({'DateOfBirth': ['1986-11-11', '1999-05-12', '1976-01-01',
                                   '1986-06-01', '1983-06-04', '1990-03-07',
                                   '1999-07-09'],
                   'State': ['NY', 'TX', 'FL', 'AL', 'AK', 'TX', 'TX']
                   },
                  index=['Jane', 'Pane', 'Aaron', 'Penelope', 'Frane',
                         'Christina', 'Cornelia'])
print(df)
print("\n---- Filter DataFrame using & ----\n")
df.index = df.index.astype('str')
df1 = df[df.index.str.contains('ane') & df['State'].str.contains("TX")]
print(df1)

Output:

DateOfBirth State
Jane       1986-11-11    NY
Pane       1999-05-12    TX
Aaron      1976-01-01    FL
Penelope   1986-06-01    AL
Frane      1983-06-04    AK
Christina  1990-03-07    TX
Cornelia   1999-07-09    TX
---- Filter DataFrame using & ----
     DateOfBirth State
Pane  1999-05-12    TX


48查找包含某字符串的所有行


import pandas as pd
df = pd.DataFrame({'DateOfBirth': ['1986-11-11', '1999-05-12', '1976-01-01',
                                   '1986-06-01', '1983-06-04', '1990-03-07',
                                   '1999-07-09'],
                   'State': ['NY', 'TX', 'FL', 'AL', 'AK', 'TX', 'TX']
                   },
                  index=['Jane', 'Pane', 'Aaron', 'Penelope', 'Frane',
                         'Christina', 'Cornelia'])
print(df)
print("\n---- Filter DataFrame using & ----\n")
df.index = df.index.astype('str')
df1 = df[df.index.str.contains('ane') | df['State'].str.contains("TX")]
print(df1)

Output:

DateOfBirth State
Jane       1986-11-11    NY
Pane       1999-05-12    TX
Aaron      1976-01-01    FL
Penelope   1986-06-01    AL
Frane      1983-06-04    AK
Christina  1990-03-07    TX
Cornelia   1999-07-09    TX
---- Filter DataFrame using & ----
          DateOfBirth State
Jane       1986-11-11    NY
Pane       1999-05-12    TX
Frane      1983-06-04    AK
Christina  1990-03-07    TX
Cornelia   1999-07-09    TX


49如果行中的值包含字符串,则创建与字符串相等的另一列


import pandas as pd
import numpy as np
df = pd.DataFrame({
    'EmpCode': ['Emp001', 'Emp002', 'Emp003', 'Emp004', 'Emp005'],
    'Name': ['John', 'Doe', 'William', 'Spark', 'Mark'],
    'Occupation': ['Chemist', 'Accountant', 'Statistician',
                   'Statistician', 'Programmer'],
    'Date Of Join': ['2018-01-25', '2018-01-26', '2018-01-26', '2018-02-26',
                     '2018-03-16'],
    'Age': [23, 24, 34, 29, 40]})
df['Department'] = pd.np.where(df.Occupation.str.contains("Chemist"), "Science",
                               pd.np.where(df.Occupation.str.contains("Statistician"), "Economics",
                               pd.np.where(df.Occupation.str.contains("Programmer"), "Computer", "General")))
print(df)

Output:

Age Date Of Join EmpCode     Name    Occupation Department
0   23   2018-01-25  Emp001     John       Chemist    Science
1   24   2018-01-26  Emp002      Doe    Accountant    General
2   34   2018-01-26  Emp003  William  Statistician  Economics
3   29   2018-02-26  Emp004    Spark  Statistician  Economics
4   40   2018-03-16  Emp005     Mark    Programmer   Computer


50计算 pandas group 中每组的行数


import pandas as pd
df = pd.DataFrame([[10, 20, 30, 40], [7, 14, 21, 28], [5, 5, 0, 0],
                   [6, 6, 6, 6], [8, 8, 8, 8], [5, 5, 0, 0]],
                  columns=['Apple', 'Orange', 'Rice', 'Oil'],
                  index=['Basket1', 'Basket2', 'Basket3',
                         'Basket4', 'Basket5', 'Basket6'])
print(df)
print("\n ----------------------------- \n")
print(df[['Apple', 'Orange', 'Rice', 'Oil']].
      groupby(['Apple']).agg(['mean', 'count']))

Output:

Apple  Orange  Rice  Oil
Basket1     10      20    30   40
Basket2      7      14    21   28
Basket3      5       5     0    0
Basket4      6       6     6    6
Basket5      8       8     8    8
Basket6      5       5     0    0
 -----------------------------
      Orange       Rice        Oil
        mean count mean count mean count
Apple
5          5     2    0     2    0     2
6          6     1    6     1    6     1
7         14     1   21     1   28     1
8          8     1    8     1    8     1
10        20     1   30     1   40     1


51检查字符串是否在 DataFrme 中


import pandas as pd
df = pd.DataFrame({'DateOfBirth': ['1986-11-11', '1999-05-12', '1976-01-01',
                                   '1986-06-01', '1983-06-04', '1990-03-07',
                                   '1999-07-09'],
                   'State': ['NY', 'TX', 'FL', 'AL', 'AK', 'TX', 'TX']
                   },
                  index=['Jane', 'Pane', 'Aaron', 'Penelope', 'Frane',
                         'Christina', 'Cornelia'])
if df['State'].str.contains('TX').any():
    print("TX is there")

Output:

TX is there


52从 DataFrame 列中获取唯一行值


import pandas as pd
df = pd.DataFrame({'State': ['NY', 'TX', 'FL', 'AL', 'AK', 'TX', 'TX']
                   },
                  index=['Jane', 'Nick', 'Aaron', 'Penelope', 'Dean',
                         'Christina', 'Cornelia'])
print(df)
print("\n----------------\n")
print(df["State"].unique())

Output:

State
Jane         NY
Nick         TX
Aaron        FL
Penelope     AL
Dean         AK
Christina    TX
Cornelia     TX
----------------
['NY' 'TX' 'FL' 'AL' 'AK']


53计算 DataFrame 列的不同值


import pandas as pd
df = pd.DataFrame({'Age': [30, 20, 22, 40, 20, 30, 20, 25],
                    'Height': [165, 70, 120, 80, 162, 72, 124, 81],
                    'Score': [4.6, 8.3, 9.0, 3.3, 4, 8, 9, 3],
                    'State': ['NY', 'TX', 'FL', 'AL', 'NY', 'TX', 'FL', 'AL']},
                   index=['Jane', 'Nick', 'Aaron', 'Penelope', 'Jaane', 'Nicky', 'Armour', 'Ponting'])
print(df.Age.value_counts())

Output:

20    3
30    2
25    1
22    1
40    1
Name: Age, dtype: int64


54删除具有重复索引的行


import pandas as pd
df = pd.DataFrame({'Age': [30, 30, 22, 40, 20, 30, 20, 25],
                   'Height': [165, 165, 120, 80, 162, 72, 124, 81],
                   'Score': [4.6, 4.6, 9.0, 3.3, 4, 8, 9, 3],
                   'State': ['NY', 'NY', 'FL', 'AL', 'NY', 'TX', 'FL', 'AL']},
                  index=['Jane', 'Jane', 'Aaron', 'Penelope', 'Jaane', 'Nicky',
                         'Armour', 'Ponting'])
print("\n -------- Duplicate Rows ----------- \n")
print(df)
df1 = df.reset_index().drop_duplicates(subset='index',
                                       keep='first').set_index('index')
print("\n ------- Unique Rows ------------ \n")
print(df1)

Output:

-------- Duplicate Rows -----------
          Age  Height  Score State
Jane       30     165    4.6    NY
Jane       30     165    4.6    NY
Aaron      22     120    9.0    FL
Penelope   40      80    3.3    AL
Jaane      20     162    4.0    NY
Nicky      30      72    8.0    TX
Armour     20     124    9.0    FL
Ponting    25      81    3.0    AL
 ------- Unique Rows ------------
          Age  Height  Score State
index
Jane       30     165    4.6    NY
Aaron      22     120    9.0    FL
Penelope   40      80    3.3    AL
Jaane      20     162    4.0    NY
Nicky      30      72    8.0    TX
Armour     20     124    9.0    FL
Ponting    25      81    3.0    AL


55删除某些列具有重复值的行


import pandas as pd
df = pd.DataFrame({'Age': [30, 40, 30, 40, 30, 30, 20, 25],
                   'Height': [120, 162, 120, 120, 120, 72, 120, 81],
                   'Score': [4.6, 4.6, 9.0, 3.3, 4, 8, 9, 3],
                   'State': ['NY', 'NY', 'FL', 'AL', 'NY', 'TX', 'FL', 'AL']},
                  index=['Jane', 'Jane', 'Aaron', 'Penelope', 'Jaane', 'Nicky',
                         'Armour', 'Ponting'])
print("\n -------- Duplicate Rows ----------- \n")
print(df)
df1 = df.reset_index().drop_duplicates(subset=['Age','Height'],
                                       keep='first').set_index('index')
print("\n ------- Unique Rows ------------ \n")
print(df1)

Output:

-------- Duplicate Rows -----------
          Age  Height  Score State
Jane       30     120    4.6    NY
Jane       40     162    4.6    NY
Aaron      30     120    9.0    FL
Penelope   40     120    3.3    AL
Jaane      30     120    4.0    NY
Nicky      30      72    8.0    TX
Armour     20     120    9.0    FL
Ponting    25      81    3.0    AL
 ------- Unique Rows ------------
          Age  Height  Score State
index
Jane       30     120    4.6    NY
Jane       40     162    4.6    NY
Penelope   40     120    3.3    AL
Nicky      30      72    8.0    TX
Armour     20     120    9.0    FL
Ponting    25      81    3.0    AL


56从 DataFrame 单元格中获取值


import pandas as pd
df = pd.DataFrame({'Age': [30, 40, 30, 40, 30, 30, 20, 25],
                   'Height': [120, 162, 120, 120, 120, 72, 120, 81],
                   'Score': [4.6, 4.6, 9.0, 3.3, 4, 8, 9, 3],
                   'State': ['NY', 'NY', 'FL', 'AL', 'NY', 'TX', 'FL', 'AL']},
                  index=['Jane', 'Jane', 'Aaron', 'Penelope', 'Jaane', 'Nicky',
                         'Armour', 'Ponting'])
print(df.loc['Nicky', 'Age'])

Output:

30


57使用 DataFrame 中的条件索引获取单元格上的标量值


import pandas as pd
df = pd.DataFrame({'Age': [30, 40, 30, 40, 30, 30, 20, 25],
                   'Height': [120, 162, 120, 120, 120, 72, 120, 81],
                   'Score': [4.6, 4.6, 9.0, 3.3, 4, 8, 9, 3],
                   'State': ['NY', 'NY', 'FL', 'AL', 'NY', 'TX', 'FL', 'AL']},
                  index=['Jane', 'Jane', 'Aaron', 'Penelope', 'Jaane', 'Nicky',
                         'Armour', 'Ponting'])
print("\nGet Height where Age is 20")
print(df.loc[df['Age'] == 20, 'Height'].values[0])
print("\nGet State where Age is 30")
print(df.loc[df['Age'] == 30, 'State'].values[0])

Output:

Get Height where Age is 20
120
Get State where Age is 30
NY


58设置 DataFrame 的特定单元格值


import pandas as pd
df = pd.DataFrame({'Age': [30, 40, 30, 40, 30, 30, 20, 25],
                   'Height': [120, 162, 120, 120, 120, 72, 120, 81]},
                  index=['Jane', 'Jane', 'Aaron', 'Penelope', 'Jaane', 'Nicky',
                         'Armour', 'Ponting'])
print("\n--------------Before------------\n")
print(df)
df.iat[0, 0] = 90
df.iat[0, 1] = 91
df.iat[1, 1] = 92
df.iat[2, 1] = 93
df.iat[7, 1] = 99
print("\n--------------After------------\n")
print(df)

Output:

--------------Before------------
          Age  Height
Jane       30     120
Jane       40     162
Aaron      30     120
Penelope   40     120
Jaane      30     120
Nicky      30      72
Armour     20     120
Ponting    25      81
--------------After------------
          Age  Height
Jane       90      91
Jane       40      92
Aaron      30      93
Penelope   40     120
Jaane      30     120
Nicky      30      72
Armour     20     120
Ponting    25      99


59从 DataFrame 行获取单元格值


import pandas as pd
df = pd.DataFrame({'Age': [30, 40, 30, 40, 30, 30, 20, 25],
                   'Height': [120, 162, 120, 120, 120, 72, 120, 81]},
                  index=['Jane', 'Jane', 'Aaron', 'Penelope', 'Jaane', 'Nicky',
                         'Armour', 'Ponting'])
print(df.loc[df.Age == 30,'Height'].tolist())

Output:

[120, 120, 120, 72]


60用字典替换 DataFrame 列中的值


import pandas as pd
df = pd.DataFrame({'State': ['NY', 'TX', 'FL', 'AL', 'AK', 'TX', 'TX']
                   },
                  index=['Jane', 'Nick', 'Aaron', 'Penelope', 'Dean',
                         'Christina', 'Cornelia'])
print(df)
dict = {"NY": 1, "TX": 2, "FL": 3, "AL": 4, "AK": 5}
df1 = df.replace({"State": dict})
print("\n\n")
print(df1)

Output:

State
Jane         NY
Nick         TX
Aaron        FL
Penelope     AL
Dean         AK
Christina    TX
Cornelia     TX
           State
Jane           1
Nick           2
Aaron          3
Penelope       4
Dean           5
Christina      2
Cornelia       2


61统计基于某一列的一列的数值


import pandas as pd
df = pd.DataFrame({'DateOfBirth': ['1986-11-11', '1999-05-12', '1976-01-01',
                                   '1986-06-01', '1983-06-04', '1990-03-07',
                                   '1999-07-09'],                   
                   'State': ['NY', 'TX', 'FL', 'AL', 'AK', 'TX', 'TX']
                   },
                  index=['Jane', 'Nick', 'Aaron', 'Penelope', 'Dean',
                         'Christina', 'Cornelia'])
print(df.groupby('State').DateOfBirth.nunique())

Output:

State
AK    1
AL    1
FL    1
NY    1
TX    3
Name: DateOfBirth, dtype: int64


62处理 DataFrame 中的缺失值


import pandas as pd
df = pd.DataFrame([[10, 20, 30, 40], [7, 14, 21, 28], [5,]],
                  columns=['Apple', 'Orange', 'Banana', 'Pear'],
                  index=['Basket1', 'Basket2', 'Basket3'])
print("\n--------- DataFrame ---------\n")
print(df)
print("\n--------- Use of isnull() ---------\n")
print(df.isnull())
print("\n--------- Use of notnull() ---------\n")
print(df.notnull())

Output:

--------- DataFrame ---------
         Apple  Orange  Banana  Pear
Basket1     10    20.0    30.0  40.0
Basket2      7    14.0    21.0  28.0
Basket3      5     NaN     NaN   NaN
--------- Use of isnull() ---------
         Apple  Orange  Banana   Pear
Basket1  False   False   False  False
Basket2  False   False   False  False
Basket3  False    True    True   True
--------- Use of notnull() ---------
         Apple  Orange  Banana   Pear
Basket1   True    True    True   True
Basket2   True    True    True   True
Basket3   True   False   False  False


63删除包含任何缺失数据的行


import pandas as pd
df = pd.DataFrame([[10, 20, 30, 40], [7, 14, 21, 28], [5,]],
                  columns=['Apple', 'Orange', 'Banana', 'Pear'],
                  index=['Basket1', 'Basket2', 'Basket3'])
print("\n--------- DataFrame ---------\n")
print(df)
print("\n--------- Use of dropna() ---------\n")
print(df.dropna())

Output:

--------- DataFrame ---------
         Apple  Orange  Banana  Pear
Basket1     10    20.0    30.0  40.0
Basket2      7    14.0    21.0  28.0
Basket3      5     NaN     NaN   NaN
--------- Use of dropna() ---------
         Apple  Orange  Banana  Pear
Basket1     10    20.0    30.0  40.0
Basket2      7    14.0    21.0  28.0


64删除 DataFrame 中缺失数据的列


import pandas as pd
df = pd.DataFrame([[10, 20, 30, 40], [7, 14, 21, 28], [5,]],
                  columns=['Apple', 'Orange', 'Banana', 'Pear'],
                  index=['Basket1', 'Basket2', 'Basket3'])
print("\n--------- DataFrame ---------\n")
print(df)
print("\n--------- Drop Columns) ---------\n")
print(df.dropna(1))

Output:

--------- DataFrame ---------
         Apple  Orange  Banana  Pear
Basket1     10    20.0    30.0  40.0
Basket2      7    14.0    21.0  28.0
Basket3      5     NaN     NaN   NaN
--------- Drop Columns) ---------
         Apple
Basket1     10
Basket2      7
Basket3      5


65按降序对索引值进行排序


import pandas as pd
df = pd.DataFrame({'DateOfBirth': ['1986-11-11', '1999-05-12', '1976-01-01',
                                   '1986-06-01', '1983-06-04', '1990-03-07',
                                   '1999-07-09'],
                   'State': ['NY', 'TX', 'FL', 'AL', 'AK', 'TX', 'TX']
                   },
                  index=['Jane', 'Pane', 'Aaron', 'Penelope', 'Frane',
                         'Christina', 'Cornelia'])
print(df.sort_index(ascending=False))

Output:

DateOfBirth State
Penelope   1986-06-01    AL
Pane       1999-05-12    TX
Jane       1986-11-11    NY
Frane      1983-06-04    AK
Cornelia   1999-07-09    TX
Christina  1990-03-07    TX
Aaron      1976-01-01    FL


66按降序对列进行排序


import pandas as pd
employees = pd.DataFrame({
    'EmpCode': ['Emp001', 'Emp002', 'Emp003', 'Emp004', 'Emp005'],
    'Name': ['John', 'Doe', 'William', 'Spark', 'Mark'],
    'Occupation': ['Chemist', 'Statistician', 'Statistician',
                   'Statistician', 'Programmer'],
    'Date Of Join': ['2018-01-25', '2018-01-26', '2018-01-26', '2018-02-26',
                     '2018-03-16'],
    'Age': [23, 24, 34, 29, 40]})
print(employees.sort_index(axis=1, ascending=False))

Output:

Occupation     Name EmpCode Date Of Join  Age
0       Chemist     John  Emp001   2018-01-25   23
1  Statistician      Doe  Emp002   2018-01-26   24
2  Statistician  William  Emp003   2018-01-26   34
3  Statistician    Spark  Emp004   2018-02-26   29
4    Programmer     Mark  Emp005   2018-03-16   40


67使用 rank 方法查找 DataFrame 中元素的排名


import pandas as pd
df = pd.DataFrame([[10, 20, 30, 40], [7, 14, 21, 28], [5, 5, 0, 0]],
                  columns=['Apple', 'Orange', 'Banana', 'Pear'],
                  index=['Basket1', 'Basket2', 'Basket3'])
print("\n--------- DataFrame Values--------\n")
print(df)
print("\n--------- DataFrame Values by Rank--------\n")
print(df.rank())

Output:

--------- DataFrame Values--------
         Apple  Orange  Banana  Pear
Basket1     10      20      30    40
Basket2      7      14      21    28
Basket3      5       5       0     0
--------- DataFrame Values by Rank--------
         Apple  Orange  Banana  Pear
Basket1    3.0     3.0     3.0   3.0
Basket2    2.0     2.0     2.0   2.0
Basket3    1.0     1.0     1.0   1.0


68在多列上设置索引


import pandas as pd
employees = pd.DataFrame({
    'EmpCode': ['Emp001', 'Emp002', 'Emp003', 'Emp004', 'Emp005'],
    'Name': ['John', 'Doe', 'William', 'Spark', 'Mark'],
    'Occupation': ['Chemist', 'Statistician', 'Statistician',
                   'Statistician', 'Programmer'],
    'Date Of Join': ['2018-01-25', '2018-01-26', '2018-01-26', '2018-02-26',
                     '2018-03-16'],
    'Age': [23, 24, 34, 29, 40]})
print("\n --------- Before Index ----------- \n")
print(employees)
print("\n --------- Multiple Indexing ----------- \n")
print(employees.set_index(['Occupation', 'Age']))

Output:

Date Of Join EmpCode     Name
Occupation   Age
Chemist      23    2018-01-25  Emp001     John
Statistician 24    2018-01-26  Emp002      Doe
             34    2018-01-26  Emp003  William
             29    2018-02-26  Emp004    Spark
Programmer   40    2018-03-16  Emp005     Mark


69确定 DataFrame 的周期索引和列


import pandas as pd
values = ["India", "Canada", "Australia",
          "Japan", "Germany", "France"]
pidx = pd.period_range('2015-01-01', periods=6)
df = pd.DataFrame(values, index=pidx, columns=['Country'])
print(df)

Output:

Country
2015-01-01      India
2015-01-02     Canada
2015-01-03  Australia
2015-01-04      Japan
2015-01-05    Germany
2015-01-06     France


70导入 CSV 指定特定索引


import pandas as pd
df = pd.read_csv('test.csv', index_col="DateTime")
print(df)

Output:

Wheat    Rice     Oil
DateTime
10/10/2016  10.500  12.500  16.500
10/11/2016  11.250  12.750  17.150
10/12/2016  10.000  13.150  15.500
10/13/2016  12.000  14.500  16.100
10/14/2016  13.000  14.825  15.600
10/15/2016  13.075  15.465  15.315
10/16/2016  13.650  16.105  15.030
10/17/2016  14.225  16.745  14.745
10/18/2016  14.800  17.385  14.460
10/19/2016  15.375  18.025  14.175


71将 DataFrame 写入 csv


import pandas as pd
df = pd.DataFrame({'DateOfBirth': ['1986-11-11', '1999-05-12', '1976-01-01',
                                   '1986-06-01', '1983-06-04', '1990-03-07',
                                   '1999-07-09'],
                   'State': ['NY', 'TX', 'FL', 'AL', 'AK', 'TX', 'TX']
                   },
                  index=['Jane', 'Pane', 'Aaron', 'Penelope', 'Frane',
                         'Christina', 'Cornelia'])
df.to_csv('test.csv', encoding='utf-8', index=True)

Output:

检查本地文件


72使用 Pandas 读取 csv 文件的特定列


import pandas as pd
df = pd.read_csv("test.csv", usecols = ['Wheat','Oil'])
print(df)


73Pandas 获取 CSV 列的列表


import pandas as pd
cols = list(pd.read_csv("test.csv", nrows =1))
print(cols)

Output:

['DateTime', 'Wheat', 'Rice', 'Oil']


74找到列值最大的行


import pandas as pd
df = pd.DataFrame([[10, 20, 30, 40], [7, 14, 21, 28], [55, 15, 8, 12]],
                  columns=['Apple', 'Orange', 'Banana', 'Pear'],
                  index=['Basket1', 'Basket2', 'Basket3'])
print(df.ix[df['Apple'].idxmax()])

Output:

Apple     55
Orange    15
Banana     8
Pear      12
Name: Basket3, dtype: int64


75使用查询方法进行复杂条件选择


import pandas as pd
df = pd.DataFrame([[10, 20, 30, 40], [7, 14, 21, 28], [55, 15, 8, 12]],
                  columns=['Apple', 'Orange', 'Banana', 'Pear'],
                  index=['Basket1', 'Basket2', 'Basket3'])
print(df)
print("\n ----------- Filter data using query method ------------- \n")
df1 = df.ix[df.query('Apple > 50 & Orange <= 15 & Banana < 15 & Pear == 12').index]
print(df1)

Output:

Apple  Orange  Banana  Pear
Basket1     10      20      30    40
Basket2      7      14      21    28
Basket3     55      15       8    12
 ----------- Filter data using query method -------------
         Apple  Orange  Banana  Pear
Basket3     55      15       8    12


76检查 Pandas 中是否存在列


import pandas as pd
df = pd.DataFrame([[10, 20, 30, 40], [7, 14, 21, 28], [55, 15, 8, 12]],
                  columns=['Apple', 'Orange', 'Banana', 'Pear'],
                  index=['Basket1', 'Basket2', 'Basket3'])
if 'Apple' in df.columns:
    print("Yes")
else:
    print("No")
if set(['Apple','Orange']).issubset(df.columns):
    print("Yes")
else:
    print("No")


77为特定列从 DataFrame 中查找 n-smallest 和 n-largest 值


import pandas as pd
df = pd.DataFrame([[10, 20, 30, 40], [7, 14, 21, 28], [55, 15, 8, 12],
                   [15, 14, 1, 8], [7, 1, 1, 8], [5, 4, 9, 2]],
                  columns=['Apple', 'Orange', 'Banana', 'Pear'],
                  index=['Basket1', 'Basket2', 'Basket3', 'Basket4',
                         'Basket5', 'Basket6'])
print("\n----------- nsmallest -----------\n")
print(df.nsmallest(2, ['Apple']))
print("\n----------- nlargest -----------\n")
print(df.nlargest(2, ['Apple']))

Output:

----------- nsmallest -----------
         Apple  Orange  Banana  Pear
Basket6      5       4       9     2
Basket2      7      14      21    28
----------- nlargest -----------
         Apple  Orange  Banana  Pear
Basket3     55      15       8    12
Basket4     15      14       1     8


78从 DataFrame 中查找所有列的最小值和最大值


import pandas as pd
df = pd.DataFrame([[10, 20, 30, 40], [7, 14, 21, 28], [55, 15, 8, 12],
                   [15, 14, 1, 8], [7, 1, 1, 8], [5, 4, 9, 2]],
                  columns=['Apple', 'Orange', 'Banana', 'Pear'],
                  index=['Basket1', 'Basket2', 'Basket3', 'Basket4',
                         'Basket5', 'Basket6'])
print("\n----------- Minimum -----------\n")
print(df[['Apple', 'Orange', 'Banana', 'Pear']].min())
print("\n----------- Maximum -----------\n")
print(df[['Apple', 'Orange', 'Banana', 'Pear']].max())

Output:

----------- Minimum -----------
Apple     5
Orange    1
Banana    1
Pear      2
dtype: int64
----------- Maximum -----------
Apple     55
Orange    20
Banana    30
Pear      40
dtype: int64


79在 DataFrame 中找到最小值和最大值所在的索引位置


import pandas as pd
df = pd.DataFrame([[10, 20, 30, 40], [7, 14, 21, 28], [55, 15, 8, 12],
                   [15, 14, 1, 8], [7, 1, 1, 8], [5, 4, 9, 2]],
                  columns=['Apple', 'Orange', 'Banana', 'Pear'],
                  index=['Basket1', 'Basket2', 'Basket3', 'Basket4',
                         'Basket5', 'Basket6'])
print("\n----------- Minimum -----------\n")
print(df[['Apple', 'Orange', 'Banana', 'Pear']].idxmin())
print("\n----------- Maximum -----------\n")
print(df[['Apple', 'Orange', 'Banana', 'Pear']].idxmax())

Output:

----------- Minimum -----------
Apple     Basket6
Orange    Basket5
Banana    Basket4
Pear      Basket6
dtype: object
----------- Maximum -----------
Apple     Basket3
Orange    Basket1
Banana    Basket1
Pear      Basket1
dtype: object


80计算 DataFrame Columns 的累积乘积和累积总和


import pandas as pd
df = pd.DataFrame([[10, 20, 30, 40], [7, 14, 21, 28], [55, 15, 8, 12],
                   [15, 14, 1, 8], [7, 1, 1, 8], [5, 4, 9, 2]],
                  columns=['Apple', 'Orange', 'Banana', 'Pear'],
                  index=['Basket1', 'Basket2', 'Basket3', 'Basket4',
                         'Basket5', 'Basket6'])
print("\n----------- Cumulative Product -----------\n")
print(df[['Apple', 'Orange', 'Banana', 'Pear']].cumprod())
print("\n----------- Cumulative Sum -----------\n")
print(df[['Apple', 'Orange', 'Banana', 'Pear']].cumsum())

Output:

----------- Cumulative Product -----------
           Apple  Orange  Banana     Pear
Basket1       10      20      30       40
Basket2       70     280     630     1120
Basket3     3850    4200    5040    13440
Basket4    57750   58800    5040   107520
Basket5   404250   58800    5040   860160
Basket6  2021250  235200   45360  1720320
----------- Cumulative Sum -----------
         Apple  Orange  Banana  Pear
Basket1     10      20      30    40
Basket2     17      34      51    68
Basket3     72      49      59    80
Basket4     87      63      60    88
Basket5     94      64      61    96
Basket6     99      68      70    98


81汇总统计


import pandas as pd
df = pd.DataFrame([[10, 20, 30, 40], [7, 14, 21, 28], [55, 15, 8, 12],
                   [15, 14, 1, 8], [7, 1, 1, 8], [5, 4, 9, 2]],
                  columns=['Apple', 'Orange', 'Banana', 'Pear'],
                  index=['Basket1', 'Basket2', 'Basket3', 'Basket4',
                         'Basket5', 'Basket6'])
print("\n----------- Describe DataFrame -----------\n")
print(df.describe())
print("\n----------- Describe Column -----------\n")
print(df[['Apple']].describe())

Output:

----------- Describe DataFrame -----------
           Apple     Orange     Banana       Pear
count   6.000000   6.000000   6.000000   6.000000
mean   16.500000  11.333333  11.666667  16.333333
std    19.180719   7.257180  11.587349  14.555640
min     5.000000   1.000000   1.000000   2.000000
25%     7.000000   6.500000   2.750000   8.000000
50%     8.500000  14.000000   8.500000  10.000000
75%    13.750000  14.750000  18.000000  24.000000
max    55.000000  20.000000  30.000000  40.000000
----------- Describe Column -----------
           Apple
count   6.000000
mean   16.500000
std    19.180719
min     5.000000
25%     7.000000
50%     8.500000
75%    13.750000
max    55.000000


82查找 DataFrame 的均值、中值和众数


import pandas as pd
df = pd.DataFrame([[10, 20, 30, 40], [7, 14, 21, 28], [55, 15, 8, 12],
                   [15, 14, 1, 8], [7, 1, 1, 8], [5, 4, 9, 2]],
                  columns=['Apple', 'Orange', 'Banana', 'Pear'],
                  index=['Basket1', 'Basket2', 'Basket3', 'Basket4',
                         'Basket5', 'Basket6'])
print("\n----------- Calculate Mean -----------\n")
print(df.mean())
print("\n----------- Calculate Median -----------\n")
print(df.median())
print("\n----------- Calculate Mode -----------\n")
print(df.mode())

Output:

----------- Calculate Mean -----------
Apple     16.500000
Orange    11.333333
Banana    11.666667
Pear      16.333333
dtype: float64
----------- Calculate Median -----------
Apple      8.5
Orange    14.0
Banana     8.5
Pear      10.0
dtype: float64
----------- Calculate Mode -----------
   Apple  Orange  Banana  Pear
0      7      14       1     8


83测量 DataFrame 列的方差和标准偏差


import pandas as pd
df = pd.DataFrame([[10, 20, 30, 40], [7, 14, 21, 28], [55, 15, 8, 12],
                   [15, 14, 1, 8], [7, 1, 1, 8], [5, 4, 9, 2]],
                  columns=['Apple', 'Orange', 'Banana', 'Pear'],
                  index=['Basket1', 'Basket2', 'Basket3', 'Basket4',
                         'Basket5', 'Basket6'])
print("\n----------- Calculate Mean -----------\n")
print(df.mean())
print("\n----------- Calculate Median -----------\n")
print(df.median())
print("\n----------- Calculate Mode -----------\n")
print(df.mode())

Output:

----------- Measure Variance -----------
Apple     367.900000
Orange     52.666667
Banana    134.266667
Pear      211.866667
dtype: float64
----------- Standard Deviation -----------
Apple     19.180719
Orange     7.257180
Banana    11.587349
Pear      14.555640
dtype: float64


84计算 DataFrame 列之间的协方差


import pandas as pd
df = pd.DataFrame([[10, 20, 30, 40], [7, 14, 21, 28], [55, 15, 8, 12],
                   [15, 14, 1, 8], [7, 1, 1, 8], [5, 4, 9, 2]],
                  columns=['Apple', 'Orange', 'Banana', 'Pear'],
                  index=['Basket1', 'Basket2', 'Basket3', 'Basket4',
                         'Basket5', 'Basket6'])
print("\n----------- Calculating Covariance -----------\n")
print(df.cov())
print("\n----------- Between 2 columns -----------\n")
# Covariance of Apple vs Orange
print(df.Apple.cov(df.Orange))

Output:

----------- Calculating Covariance -----------
        Apple     Orange      Banana        Pear
Apple   367.9  47.600000  -40.200000  -35.000000
Orange   47.6  52.666667   54.333333   77.866667
Banana  -40.2  54.333333  134.266667  154.933333
Pear    -35.0  77.866667  154.933333  211.866667
----------- Between 2 columns -----------
47.60000000000001


85计算 Pandas 中两个 DataFrame 对象之间的相关性


import pandas as pd
df1 = pd.DataFrame([[10, 20, 30, 40], [7, 14, 21, 28], [55, 15, 8, 12],
                   [15, 14, 1, 8], [7, 1, 1, 8], [5, 4, 9, 2]],
                  columns=['Apple', 'Orange', 'Banana', 'Pear'],
                  index=['Basket1', 'Basket2', 'Basket3', 'Basket4',
                         'Basket5', 'Basket6'])
print("\n------ Calculating Correlation of one DataFrame Columns -----\n")
print(df1.corr())
df2 = pd.DataFrame([[52, 54, 58, 41], [14, 24, 51, 78], [55, 15, 8, 12],
                   [15, 14, 1, 8], [7, 17, 18, 98], [15, 34, 29, 52]],
                  columns=['Apple', 'Orange', 'Banana', 'Pear'],
                  index=['Basket1', 'Basket2', 'Basket3', 'Basket4',
                         'Basket5', 'Basket6'])
print("\n----- Calculating correlation between two DataFrame -------\n")
print(df2.corrwith(other=df1))

Output:

------ Calculating Correlation of one DataFrame Columns -----
           Apple    Orange    Banana      Pear
Apple   1.000000  0.341959 -0.180874 -0.125364
Orange  0.341959  1.000000  0.646122  0.737144
Banana -0.180874  0.646122  1.000000  0.918606
Pear   -0.125364  0.737144  0.918606  1.000000
----- Calculating correlation between two DataFrame -------
Apple     0.678775
Orange    0.354993
Banana    0.920872
Pear      0.076919
dtype: float64


86计算 DataFrame 列的每个单元格的百分比变化


import pandas as pd
df = pd.DataFrame([[10, 20, 30, 40], [7, 14, 21, 28], [55, 15, 8, 12],
                   [15, 14, 1, 8], [7, 1, 1, 8], [5, 4, 9, 2]],
                  columns=['Apple', 'Orange', 'Banana', 'Pear'],
                  index=['Basket1', 'Basket2', 'Basket3', 'Basket4',
                         'Basket5', 'Basket6'])
print("\n------ Percent change at each cell of a Column -----\n")
print(df[['Apple']].pct_change()[:3])
print("\n------ Percent change at each cell of a DataFrame -----\n")
print(df.pct_change()[:5])

Output:

------ Percent change at each cell of a Column -----
            Apple
Basket1       NaN
Basket2 -0.300000
Basket3  6.857143
------ Percent change at each cell of a DataFrame -----
            Apple    Orange    Banana      Pear
Basket1       NaN       NaN       NaN       NaN
Basket2 -0.300000 -0.300000 -0.300000 -0.300000
Basket3  6.857143  0.071429 -0.619048 -0.571429
Basket4 -0.727273 -0.066667 -0.875000 -0.333333
Basket5 -0.533333 -0.928571  0.000000  0.000000


87在 Pandas 中向前和向后填充 DataFrame 列的缺失值


import pandas as pd
df = pd.DataFrame([[10, 30, 40], [], [15, 8, 12],
                   [15, 14, 1, 8], [7, 8], [5, 4, 1]],
                  columns=['Apple', 'Orange', 'Banana', 'Pear'],
                  index=['Basket1', 'Basket2', 'Basket3', 'Basket4',
                         'Basket5', 'Basket6'])
print("\n------ DataFrame with NaN -----\n")
print(df)
print("\n------ DataFrame with Forward Filling -----\n")
print(df.ffill())
print("\n------ DataFrame with Forward Filling -----\n")
print(df.bfill())

Output:

------ DataFrame with NaN -----
         Apple  Orange  Banana  Pear
Basket1   10.0    30.0    40.0   NaN
Basket2    NaN     NaN     NaN   NaN
Basket3   15.0     8.0    12.0   NaN
Basket4   15.0    14.0     1.0   8.0
Basket5    7.0     8.0     NaN   NaN
Basket6    5.0     4.0     1.0   NaN
------ DataFrame with Forward Filling -----
         Apple  Orange  Banana  Pear
Basket1   10.0    30.0    40.0   NaN
Basket2   10.0    30.0    40.0   NaN
Basket3   15.0     8.0    12.0   NaN
Basket4   15.0    14.0     1.0   8.0
Basket5    7.0     8.0     1.0   8.0
Basket6    5.0     4.0     1.0   8.0
------ DataFrame with Forward Filling -----
         Apple  Orange  Banana  Pear
Basket1   10.0    30.0    40.0   8.0
Basket2   15.0     8.0    12.0   8.0
Basket3   15.0     8.0    12.0   8.0
Basket4   15.0    14.0     1.0   8.0
Basket5    7.0     8.0     1.0   NaN
Basket6    5.0     4.0     1.0   NaN


88在 Pandas 中使用非分层索引使用 Stacking


import pandas as pd
df = pd.DataFrame([[10, 30, 40], [], [15, 8, 12],
                   [15, 14, 1, 8], [7, 8], [5, 4, 1]],
                  columns=['Apple', 'Orange', 'Banana', 'Pear'],
                  index=['Basket1', 'Basket2', 'Basket3', 'Basket4',
                         'Basket5', 'Basket6'])
print("\n------ DataFrame-----\n")
print(df)
print("\n------ Stacking DataFrame -----\n")
print(df.stack(level=-1))

Output:

------ DataFrame-----
         Apple  Orange  Banana  Pear
Basket1   10.0    30.0    40.0   NaN
Basket2    NaN     NaN     NaN   NaN
Basket3   15.0     8.0    12.0   NaN
Basket4   15.0    14.0     1.0   8.0
Basket5    7.0     8.0     NaN   NaN
Basket6    5.0     4.0     1.0   NaN
------ Stacking DataFrame -----
Basket1  Apple     10.0
         Orange    30.0
         Banana    40.0
Basket3  Apple     15.0
         Orange     8.0
         Banana    12.0
Basket4  Apple     15.0
         Orange    14.0
         Banana     1.0
         Pear       8.0
Basket5  Apple      7.0
         Orange     8.0
Basket6  Apple      5.0
         Orange     4.0
         Banana     1.0
dtype: float64


89使用分层索引对 Pandas 进行拆分


import pandas as pd
df = pd.DataFrame([[10, 30, 40], [], [15, 8, 12],
                   [15, 14, 1, 8], [7, 8], [5, 4, 1]],
                  columns=['Apple', 'Orange', 'Banana', 'Pear'],
                  index=['Basket1', 'Basket2', 'Basket3', 'Basket4',
                         'Basket5', 'Basket6'])
print("\n------ DataFrame-----\n")
print(df)
print("\n------ Unstacking DataFrame -----\n")
print(df.unstack(level=-1))

Output:

------ DataFrame-----
         Apple  Orange  Banana  Pear
Basket1   10.0    30.0    40.0   NaN
Basket2    NaN     NaN     NaN   NaN
Basket3   15.0     8.0    12.0   NaN
Basket4   15.0    14.0     1.0   8.0
Basket5    7.0     8.0     NaN   NaN
Basket6    5.0     4.0     1.0   NaN
------ Unstacking DataFrame -----
Apple   Basket1    10.0
        Basket2     NaN
        Basket3    15.0
        Basket4    15.0
        Basket5     7.0
        Basket6     5.0
Orange  Basket1    30.0
        Basket2     NaN
        Basket3     8.0
        Basket4    14.0
        Basket5     8.0
        Basket6     4.0
Banana  Basket1    40.0
        Basket2     NaN
        Basket3    12.0
        Basket4     1.0
        Basket5     NaN
        Basket6     1.0
Pear    Basket1     NaN
        Basket2     NaN
        Basket3     NaN
        Basket4     8.0
        Basket5     NaN
        Basket6     NaN
dtype: float64


90Pandas 获取 HTML 页面上 table 数据


import pandas as pd
df pd.read_html("url")
相关文章
|
8月前
|
存储 数据采集 数据处理
深入探索Pandas的DataFrame:基本用法与案例研究
深入探索Pandas的DataFrame:基本用法与案例研究
224 0
|
5月前
|
JSON 数据挖掘 API
案例 | 用pdpipe搭建pandas数据分析流水线
案例 | 用pdpipe搭建pandas数据分析流水线
58 2
|
8月前
|
数据可视化 数据挖掘 C++
数据分析综合案例讲解,一文搞懂Numpy,pandas,matplotlib,seaborn技巧方法
数据分析综合案例讲解,一文搞懂Numpy,pandas,matplotlib,seaborn技巧方法
185 2
|
8月前
|
存储 数据可视化 数据挖掘
实战案例:Pandas在金融数据分析中的应用
【4月更文挑战第16天】本文通过实例展示了Pandas在金融数据分析中的应用。案例中,一家投资机构使用Pandas加载、清洗股票历史价格数据,删除无关列并重命名,将日期设为索引。接着,数据被可视化以观察价格走势,进行基本统计分析了解价格分布,以及计算移动平均线来平滑波动。Pandas的便捷功能在金融数据分析中体现出高效率和实用性。
|
8月前
|
供应链 搜索推荐 数据挖掘
Pandas实战案例:电商数据分析的实践与挑战
【4月更文挑战第16天】本文通过一个电商数据分析案例展示了Pandas在处理销售数据、用户行为分析及商品销售趋势预测中的应用。在数据准备与清洗阶段,Pandas用于处理缺失值、重复值。接着,通过用户购买行为和商品销售趋势分析,构建用户画像并预测销售趋势。实践中遇到的大数据量和数据多样性挑战,通过分布式计算和数据标准化解决。未来将继续深入研究Pandas与其他先进技术的结合,提升决策支持能力。
|
8月前
|
索引 Python
肝了3天,整理了90个Pandas案例,强烈建议收藏!
肝了3天,整理了90个Pandas案例,强烈建议收藏!
|
Python
Pandas在数据分析中的应用案例
Pandas在数据分析中的应用案例
147 0
|
机器学习/深度学习 数据采集 数据建模
Python机器学习数据建模与分析——Numpy和Pandas综合应用案例:空气质量监测数据的预处理和基本分析
本篇文章主要以北京市空气质量监测数据为例子,聚集数据建模中的数据预处理和基本分析环节,说明Numpy和Pandas的数据读取、数据分组、数据重编码、分类汇总等数据加工处理功能。同时在实现案例的过程中对用到的Numpy和Pandas相关函数进行讲解。
735 0
Python机器学习数据建模与分析——Numpy和Pandas综合应用案例:空气质量监测数据的预处理和基本分析
|
数据处理 Python
数据导入与预处理-第6章-04pandas综合案例(下)
数据导入与预处理-第6章-04pandas综合案例 1 pandas综合案例-运动员信息数据 1.1 查看数据 1.2 数据处理与分析
数据导入与预处理-第6章-04pandas综合案例(下)
|
数据处理 Python
数据导入与预处理-第6章-04pandas综合案例(上)
数据导入与预处理-第6章-04pandas综合案例 1 pandas综合案例-运动员信息数据 1.1 查看数据 1.2 数据处理与分析
数据导入与预处理-第6章-04pandas综合案例(上)

热门文章

最新文章