机器学习(九)梯度下降算法

简介: 梯度:是一个矢量,其方向上的方向导数最大,其大小正好是此最大方向导数。关于梯度的更多介绍请看:如何直观形象的理解方向导数与梯度以及它们之间的关系?

1 梯度


1.1 定义



梯度:是一个矢量,其方向上的方向导数最大,其大小正好是此最大方向导数。

关于梯度的更多介绍请看:如何直观形象的理解方向导数与梯度以及它们之间的关系?


1.2 计算


一个标量函数φ的梯度记为:


10.png


在三维直角坐标系中表示为:


11.png


1.3 范例


12.png


2 梯度下降法


2.1 定义


梯度下降法(英语:Gradient descent)是一个一阶最优化算法,通常也称为最速下降法。 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索。如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点;这个过程则被称为梯度上升法。


13.png


2.2 描述


梯度下降法基于以下观察的:如果实值函数F(x)在a处可微且有定义,那么函数F(x)在a点沿着梯度相反的方向-▽F(a)下降最快。


因而,假设


14.png


对于γ>0为一个够小数值时成立,那么F(a)≥F(b)。

考虑到这一点,我们可以从函数F的局部极小值的初始估计x0出发,考虑到如下序列x0,x1,x2,....使得:


15.png


因此可以得到


16.png


如果顺利的话,序列(xn)收敛到期望的极值。注意每次迭代的γ可以改变。


下面的这张图片展示了这一过程,这里假设F定义在平面上,并且函数图像是一个碗形。蓝色的曲线是等高线,即函数F为常数的集合构成的曲线。红色的箭头指向该点梯度的反方向。(一点处的梯度方向与通过该点的等高线垂直)。沿着梯度下降方向,将最终到达碗底,即函数F值最小的点。


17.png


2.3 实例


梯度下降法处理一些复杂的非线性函数会出现问题,例如Rosenbrock函数


18.png


其最小值在(x,y)=(1,1)处,数值为f(x,y)=0。优化过程是之字形的向极小值点靠近,速度非常缓慢。


19.png


2.4 梯度下降算法的原理


  • 微分

    20.png

单变量的微分


21.png

关于x和y的复合变量微分


  • 什么是梯度
    J(θ)是关于θ的一个函数,那么关于θ的梯度如下图所示:

    22.png

    其实是一个有方向的向量,代表函数变化最快的方向


  • 如何使用梯度来更新参数
    就如在很多文章中将梯度下降算法比喻为一个人以最快的速度下山,同时要保证速度最快,方向是正确的。如下图所示,θ0是最初的位置,θ1是我们要到达的第二个位置,计算公式为下图:


23.png


  • 关于α

α为学习率即参数到达最优值过程的速度快慢,如Andrew Ng的Stanford公开课程所说,假如你从山峰的最高点根据梯度下降法寻找最优值,当你学习率过大,即下降的快,步子大,那么你很可能会在某一步跨过最优值,当你学习率过小时,每次下降一厘米,这将走到何年何月呀,用术语来说就是,长时间无法收敛。因此,学习率直接决定着学习算法的性能表现。


https://blog.csdn.net/john_kai/article/details/72861731


如下图所示:

24.png


  • 梯度计算实例

    25.png


3代码实现


参考:

import numpy as np
# Size of the points dataset.
m = 20
# Points x-coordinate and dummy value (x0, x1).
X0 = np.ones((m, 1))
X1 = np.arange(1, m+1).reshape(m, 1)
X = np.hstack((X0, X1))
# Points y-coordinate
y = np.array([
    3, 4, 5, 5, 2, 4, 7, 8, 11, 8, 12,
    11, 13, 13, 16, 17, 18, 17, 19, 21
]).reshape(m, 1)
# The Learning Rate alpha.
alpha = 0.01
def error_function(theta, X, y):
    '''Error function J definition.'''
    diff = np.dot(X, theta) - y
    return (1./2*m) * np.dot(np.transpose(diff), diff)
def gradient_function(theta, X, y):
    '''Gradient of the function J definition.'''
    diff = np.dot(X, theta) - y
    return (1./m) * np.dot(np.transpose(X), diff)
def gradient_descent(X, y, alpha):
    '''Perform gradient descent.'''
    theta = np.array([1, 1]).reshape(2, 1)
    gradient = gradient_function(theta, X, y)
    while not np.all(np.absolute(gradient) <= 1e-5):
        theta = theta - alpha * gradient
        gradient = gradient_function(theta, X, y)
    return theta
optimal = gradient_descent(X, y, alpha)
print('optimal:', optimal)
print('error function:', error_function(optimal, X, y)[0,0])



相关文章
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
146 4
|
6天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
80 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
22天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
44 2
|
2月前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
55 1
|
2月前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络
|
2月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
111 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 算法
深入探索机器学习中的决策树算法
深入探索机器学习中的决策树算法
44 0
|
2月前
|
机器学习/深度学习 算法 Python
机器学习入门:理解并实现K-近邻算法
机器学习入门:理解并实现K-近邻算法
42 0
|
8月前
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
262 14
|
8月前
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)