Python:Scrapy的settings

简介: Python:Scrapy的settings

Settings



Scrapy设置(settings)提供了定制Scrapy组件的方法。可以控制包括核心(core),插件(extension),pipeline及spider组件。比如 设置Json Pipeliine、LOG_LEVEL等。


参考文档:


http://scrapy-chs.readthedocs.io/zh_CN/1.0/topics/settings.html#topics-settings-ref


内置设置参考手册



  • BOT_NAME


  • 默认: 'scrapybot'


  • 当您使用 startproject 命令创建项目时其也被自动赋值。


  • CONCURRENT_ITEMS


  • 默认: 100


  • Item Processor(即 Item Pipeline) 同时处理(每个response的)item的最大值。


  • CONCURRENT_REQUESTS


  • 默认: 16


  • Scrapy downloader 并发请求(concurrent requests)的最大值。


  • DEFAULT_REQUEST_HEADERS


  • 默认: 如下


{
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
'Accept-Language': 'en',
}


Scrapy HTTP Request使用的默认header。


  • DEPTH_LIMIT


  • 默认: 0
  • 爬取网站最大允许的深度(depth)值。如果为0,则没有限制。


  • DOWNLOAD_DELAY


  • 默认: 0


  • 下载器在下载同一个网站下一个页面前需要等待的时间。该选项可以用来限制爬取速度, 减轻服务器压力。同时也支持小数:


DOWNLOAD_DELAY = 0.25 # 250 ms of delay


  • 默认情况下,Scrapy在两个请求间不等待一个固定的值, 而是使用0.5到1.5之间的一个随机值 * DOWNLOAD_DELAY 的结果作为等待间隔。


DOWNLOAD_TIMEOUT


  • 默认: 180


  • 下载器超时时间(单位: 秒)。


  • ITEM_PIPELINES


  • 默认: {}


  • 保存项目中启用的pipeline及其顺序的字典。该字典默认为空,值(value)任意,不过值(value)习惯设置在0-1000范围内,值越小优先级越高。


ITEM_PIPELINES = {
'mySpider.pipelines.SomethingPipeline': 300,
'mySpider.pipelines.ItcastJsonPipeline': 800,
}


  • LOG_ENABLED


  • 默认: True


  • 是否启用logging。


  • LOG_ENCODING


  • 默认: 'utf-8'


  • logging使用的编码。


  • LOG_LEVEL


  • 默认: 'DEBUG'


  • log的最低级别。可选的级别有: CRITICAL、 ERROR、WARNING、INFO、DEBUG 。


  • USER_AGENT


  • 默认: "Scrapy/VERSION (+http://scrapy.org)"


  • 爬取的默认User-Agent,除非被覆盖。


  • PROXIES: 代理设置


  • 示例:


PROXIES = [
  {'ip_port': '111.11.228.75:80', 'password': ''},
  {'ip_port': '120.198.243.22:80', 'password': ''},
  {'ip_port': '111.8.60.9:8123', 'password': ''},
  {'ip_port': '101.71.27.120:80', 'password': ''},
  {'ip_port': '122.96.59.104:80', 'password': ''},
  {'ip_port': '122.224.249.122:8088', 'password':''},
]


  • COOKIES_ENABLED = False


  • 禁用Cookies


目录
相关文章
|
8月前
|
数据采集 存储 数据处理
Scrapy:Python网络爬虫框架的利器
在当今信息时代,网络数据已成为企业和个人获取信息的重要途径。而Python网络爬虫框架Scrapy则成为了网络爬虫工程师的必备工具。本文将介绍Scrapy的概念与实践,以及其在数据采集和处理过程中的应用。
84 1
|
2月前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
123 6
|
2月前
|
数据采集 前端开发 中间件
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
101 4
|
8月前
|
存储 前端开发 机器人
Python网络数据抓取(6):Scrapy 实战
Python网络数据抓取(6):Scrapy 实战
72 2
|
3月前
|
数据采集 监控 中间件
Scrapy入门到放弃03:理解settings配置,监控scrapy引擎|8月更文挑战
Scrapy入门到放弃03:理解settings配置,监控scrapy引擎|8月更文挑战
|
5月前
|
数据采集 数据可视化 数据挖掘
基于python django的scrapy去哪儿网数据采集与分析,包括登录注册和可视化大屏,有md5加密
本文介绍了一个基于Python和Django框架,使用Scrapy进行去哪儿网数据采集与分析的项目,包括实现登录注册功能、MD5加密以及通过可视化大屏展示分析结果的综合系统。
基于python django的scrapy去哪儿网数据采集与分析,包括登录注册和可视化大屏,有md5加密
|
5月前
|
数据采集 存储 中间件
Python进行网络爬虫:Scrapy框架的实践
【8月更文挑战第17天】网络爬虫是自动化程序,用于从互联网收集信息。Python凭借其丰富的库和框架成为构建爬虫的首选语言。Scrapy作为一款流行的开源框架,简化了爬虫开发过程。本文介绍如何使用Python和Scrapy构建简单爬虫:首先安装Scrapy,接着创建新项目并定义爬虫,指定起始URL和解析逻辑。运行爬虫可将数据保存为JSON文件或存储到数据库。此外,Scrapy支持高级功能如中间件定制、分布式爬取、动态页面渲染等。在实践中需遵循最佳规范,如尊重robots.txt协议、合理设置爬取速度等。通过本文,读者将掌握Scrapy基础并了解如何高效地进行网络数据采集。
268 6
|
5月前
|
数据采集 存储 JSON
Python爬虫开发:BeautifulSoup、Scrapy入门
在现代网络开发中,网络爬虫是一个非常重要的工具。它可以自动化地从网页中提取数据,并且可以用于各种用途,如数据收集、信息聚合和内容监控等。在Python中,有多个库可以用于爬虫开发,其中BeautifulSoup和Scrapy是两个非常流行的选择。本篇文章将详细介绍这两个库,并提供一个综合详细的例子,展示如何使用它们来进行网页数据爬取。
|
7月前
|
数据采集 存储 中间件
Scrapy,作为一款强大的Python网络爬虫框架,凭借其高效、灵活、易扩展的特性,深受开发者的喜爱
【6月更文挑战第10天】Scrapy是Python的高效爬虫框架,以其异步处理、多线程及中间件机制提升爬取效率。它提供丰富组件和API,支持灵活的数据抓取、清洗、存储,可扩展到各种数据库。通过自定义组件,Scrapy能适应动态网页和应对反爬策略,同时与数据分析库集成进行复杂分析。但需注意遵守法律法规和道德规范,以合法合规的方式进行爬虫开发。随着技术发展,Scrapy在数据收集领域将持续发挥关键作用。
117 4
|
8月前
|
数据采集 存储 中间件
Python高效爬虫——scrapy介绍与使用
Scrapy是一个快速且高效的网页抓取框架,用于抓取网站并从中提取结构化数据。它可用于多种用途,从数据挖掘到监控和自动化测试。 相比于自己通过requests等模块开发爬虫,scrapy能极大的提高开发效率,包括且不限于以下原因: 1. 它是一个异步框架,并且能通过配置调节并发量,还可以针对域名或ip进行精准控制 2. 内置了xpath等提取器,方便提取结构化数据 3. 有爬虫中间件和下载中间件,可以轻松地添加、修改或删除请求和响应的处理逻辑,从而增强了框架的可扩展性 4. 通过管道方式存储数据,更加方便快捷的开发各种数据储存方式