秒杀架构实践(下)

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 之前在 Java-Interview 中提到过秒杀架构的设计,这次基于其中的理论简单实现了一下。 本次采用循序渐进的方式逐步提高性能达到并发秒杀的效果

distributed-redis-tool ⬆️v1.0.3


为此还对 github.com/crossoverJi… 进行了小小的升级。


因为加上该组件之后所有的请求都会经过 Redis,所以对 Redis 资源的使用也是要非常小心。


API 更新


修改之后的 API 如下:


@Configuration
public class RedisLimitConfig {
    private Logger logger = LoggerFactory.getLogger(RedisLimitConfig.class);
    @Value("${redis.limit}")
    private int limit;
    @Autowired
    private JedisConnectionFactory jedisConnectionFactory;
    @Bean
    public RedisLimit build() {
        RedisLimit redisLimit = new RedisLimit.Builder(jedisConnectionFactory, RedisToolsConstant.SINGLE)
                .limit(limit)
                .build();
        return redisLimit;
    }
}


这里构建器改用了 JedisConnectionFactory,所以得配合 Spring 来一起使用。


并在初始化时显示传入 Redis 是以集群方式部署还是单机(强烈建议集群,限流之后对 Redis 还是有一定的压力)。


限流实现


既然 API 更新了,实现自然也要修改:


/**
     * limit traffic
     * @return if true
     */
    public boolean limit() {
        //get connection
        Object connection = getConnection();
        Object result = limitRequest(connection);
        if (FAIL_CODE != (Long) result) {
            return true;
        } else {
            return false;
        }
    }
    private Object limitRequest(Object connection) {
        Object result = null;
        String key = String.valueOf(System.currentTimeMillis() / 1000);
        if (connection instanceof Jedis){
            result = ((Jedis)connection).eval(script, Collections.singletonList(key), Collections.singletonList(String.valueOf(limit)));
            ((Jedis) connection).close();
        }else {
            result = ((JedisCluster) connection).eval(script, Collections.singletonList(key), Collections.singletonList(String.valueOf(limit)));
            try {
                ((JedisCluster) connection).close();
            } catch (IOException e) {
                logger.error("IOException",e);
            }
        }
        return result;
    }
    private Object getConnection() {
        Object connection ;
        if (type == RedisToolsConstant.SINGLE){
            RedisConnection redisConnection = jedisConnectionFactory.getConnection();
            connection = redisConnection.getNativeConnection();
        }else {
            RedisClusterConnection clusterConnection = jedisConnectionFactory.getClusterConnection();
            connection = clusterConnection.getNativeConnection() ;
        }
        return connection;
    }


如果是原生的 Spring 应用得采用 @SpringControllerLimit(errorCode = 200) 注解。


实际使用如下:


web 端:


/**
     * 乐观锁更新库存 限流
     * @param sid
     * @return
     */
    @SpringControllerLimit(errorCode = 200)
    @RequestMapping("/createOptimisticLimitOrder/{sid}")
    @ResponseBody
    public String createOptimisticLimitOrder(@PathVariable int sid) {
        logger.info("sid=[{}]", sid);
        int id = 0;
        try {
            id = orderService.createOptimisticOrder(sid);
        } catch (Exception e) {
            logger.error("Exception",e);
        }
        return String.valueOf(id);
    }
复制代码


Service 端就没什么更新了,依然是采用的乐观锁更新数据库。


再压测看下效果 /createOptimisticLimitOrderByRedis/1








首先是看结果没有问题,再看数据库连接以及并发请求数都有明显的下降


乐观锁更新 + 分布式限流 + Redis 缓存


其实仔细观察 Druid 监控数据发现这个 SQL 被多次查询:



其实这是实时查询库存的 SQL,主要是为了在每次下单之前判断是否还有库存。


这也是个优化点


这种数据我们完全可以放在内存中,效率比在数据库要高很多。


由于我们的应用是分布式的,所以堆内缓存显然不合适,Redis 就非常适合。


这次主要改造的是 Service 层:


  • 每次查询库存时走 Redis。


  • 扣库存时更新 Redis。


  • 需要提前将库存信息写入 Redis(手动或者程序自动都可以)。


主要代码如下:


@Override
    public int createOptimisticOrderUseRedis(int sid) throws Exception {
        //检验库存,从 Redis 获取
        Stock stock = checkStockByRedis(sid);
        //乐观锁更新库存 以及更新 Redis
        saleStockOptimisticByRedis(stock);
        //创建订单
        int id = createOrder(stock);
        return id ;
    }
    private Stock checkStockByRedis(int sid) throws Exception {
        Integer count = Integer.parseInt(redisTemplate.opsForValue().get(RedisKeysConstant.STOCK_COUNT + sid));
        Integer sale = Integer.parseInt(redisTemplate.opsForValue().get(RedisKeysConstant.STOCK_SALE + sid));
        if (count.equals(sale)){
            throw new RuntimeException("库存不足 Redis currentCount=" + sale);
        }
        Integer version = Integer.parseInt(redisTemplate.opsForValue().get(RedisKeysConstant.STOCK_VERSION + sid));
        Stock stock = new Stock() ;
        stock.setId(sid);
        stock.setCount(count);
        stock.setSale(sale);
        stock.setVersion(version);
        return stock;
    }    
    /**
     * 乐观锁更新数据库 还要更新 Redis
     * @param stock
     */
    private void saleStockOptimisticByRedis(Stock stock) {
        int count = stockService.updateStockByOptimistic(stock);
        if (count == 0){
            throw new RuntimeException("并发更新库存失败") ;
        }
        //自增
        redisTemplate.opsForValue().increment(RedisKeysConstant.STOCK_SALE + stock.getId(),1) ;
        redisTemplate.opsForValue().increment(RedisKeysConstant.STOCK_VERSION + stock.getId(),1) ;
    }    


压测看看实际效果 /createOptimisticLimitOrderByRedis/1






最后发现数据没问题,数据库的请求与并发也都下来了。


乐观锁更新 + 分布式限流 + Redis 缓存 + Kafka 异步


最后的优化还是想如何来再次提高吞吐量以及性能的。


我们上文所有例子其实都是同步请求,完全可以利用同步转异步来提高性能啊。


这里我们将写订单以及更新库存的操作进行异步化,利用 Kafka 来进行解耦和队列的作用。


每当一个请求通过了限流到达了 Service 层通过了库存校验之后就将订单信息发给 Kafka ,这样一个请求就可以直接返回了。


消费程序再对数据进行入库落地。


因为异步了,所以最终需要采取回调或者是其他提醒的方式提醒用户购买完成。


这里代码较多就不贴了,消费程序其实就是把之前的 Service 层的逻辑重写了一遍,不过采用的是 SpringBoot。


感兴趣的朋友可以看下。


github.com/crossoverJi…


总结


其实经过上面的一顿优化总结起来无非就是以下几点:


  • 尽量将请求拦截在上游。


  • 还可以根据 UID 进行限流。


  • 最大程度的减少请求落到 DB。


  • 多利用缓存。


  • 同步操作异步化。


  • fail fast,尽早失败,保护应用。


相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
21天前
|
运维 持续交付 云计算
深入解析云计算中的微服务架构:原理、优势与实践
深入解析云计算中的微服务架构:原理、优势与实践
55 1
|
1天前
|
弹性计算 Java 关系型数据库
Web应用上云经典架构实践教学
Web应用上云经典架构实践教学
Web应用上云经典架构实践教学
|
21天前
|
弹性计算 持续交付 API
构建高效后端服务:微服务架构的深度解析与实践
在当今快速发展的软件行业中,构建高效、可扩展且易于维护的后端服务是每个技术团队的追求。本文将深入探讨微服务架构的核心概念、设计原则及其在实际项目中的应用,通过具体案例分析,展示如何利用微服务架构解决传统单体应用面临的挑战,提升系统的灵活性和响应速度。我们将从微服务的拆分策略、通信机制、服务发现、配置管理、以及持续集成/持续部署(CI/CD)等方面进行全面剖析,旨在为读者提供一套实用的微服务实施指南。
|
17天前
|
运维 监控 Java
后端开发中的微服务架构实践与挑战####
在数字化转型加速的今天,微服务架构凭借其高度的灵活性、可扩展性和可维护性,成为众多企业后端系统构建的首选方案。本文深入探讨了微服务架构的核心概念、实施步骤、关键技术考量以及面临的主要挑战,旨在为开发者提供一份实用的实践指南。通过案例分析,揭示微服务在实际项目中的应用效果,并针对常见问题提出解决策略,帮助读者更好地理解和应对微服务架构带来的复杂性与机遇。 ####
|
20天前
|
NoSQL Java 数据处理
基于Redis海量数据场景分布式ID架构实践
【11月更文挑战第30天】在现代分布式系统中,生成全局唯一的ID是一个常见且重要的需求。在微服务架构中,各个服务可能需要生成唯一标识符,如用户ID、订单ID等。传统的自增ID已经无法满足在集群环境下保持唯一性的要求,而分布式ID解决方案能够确保即使在多个实例间也能生成全局唯一的标识符。本文将深入探讨如何利用Redis实现分布式ID生成,并通过Java语言展示多个示例,同时分析每个实践方案的优缺点。
38 8
|
17天前
|
算法 NoSQL Java
微服务架构下的接口限流策略与实践#### 一、
本文旨在探讨微服务架构下,面对高并发请求时如何有效实施接口限流策略,以保障系统稳定性和服务质量。不同于传统的摘要概述,本文将从实际应用场景出发,深入剖析几种主流的限流算法(如令牌桶、漏桶及固定窗口计数器等),通过对比分析它们的优缺点,并结合具体案例,展示如何在Spring Cloud Gateway中集成自定义限流方案,实现动态限流规则调整,为读者提供一套可落地的实践指南。 #### 二、
41 3
|
19天前
|
负载均衡 Java 开发者
深入探索Spring Cloud与Spring Boot:构建微服务架构的实践经验
深入探索Spring Cloud与Spring Boot:构建微服务架构的实践经验
62 5
|
15天前
|
消息中间件 运维 安全
后端开发中的微服务架构实践与挑战####
在数字化转型的浪潮中,微服务架构凭借其高度的灵活性和可扩展性,成为众多企业重构后端系统的首选方案。本文将深入探讨微服务的核心概念、设计原则、关键技术选型及在实际项目实施过程中面临的挑战与解决方案,旨在为开发者提供一套实用的微服务架构落地指南。我们将从理论框架出发,逐步深入至技术细节,最终通过案例分析,揭示如何在复杂业务场景下有效应用微服务,提升系统的整体性能与稳定性。 ####
31 1
|
17天前
|
监控 安全 持续交付
构建高效微服务架构:策略与实践####
在数字化转型的浪潮中,微服务架构凭借其高度解耦、灵活扩展和易于维护的特点,成为现代企业应用开发的首选。本文深入探讨了构建高效微服务架构的关键策略与实战经验,从服务拆分的艺术到通信机制的选择,再到容器化部署与持续集成/持续部署(CI/CD)的实践,旨在为开发者提供一套全面的微服务设计与实现指南。通过具体案例分析,揭示如何避免常见陷阱,优化系统性能,确保系统的高可用性与可扩展性,助力企业在复杂多变的市场环境中保持竞争力。 ####
35 2
|
21天前
|
监控 Serverless 云计算
探索Serverless架构:开发实践与优化策略
本文深入探讨了Serverless架构的核心概念、开发实践及优化策略。Serverless让开发者无需管理服务器即可运行代码,具有成本效益、高可扩展性和提升开发效率等优势。文章还详细介绍了函数设计、安全性、监控及性能和成本优化的最佳实践。
下一篇
DataWorks