使用「换元一维优化」方式求解完全背包|Java 刷题打卡

简介: 使用「换元一维优化」方式求解完全背包|Java 刷题打卡

网络异常,图片无法展示
|


题目描述



这是 LeetCode 上的518. 零钱兑换 II,难度为 Medium


给定不同面额的硬币和一个总金额。


写出函数来计算可以凑成总金额的硬币组合数。


假设每一种面额的硬币有无限个。


示例 1:


输入: amount = 5, coins = [1, 2, 5]
输出: 4
解释: 有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
复制代码


示例 2:


输入: amount = 3, coins = [2]
输出: 0
解释: 只用面额2的硬币不能凑成总金额3。
复制代码


示例 3:


输入: amount = 10, coins = [10] 
输出: 1
复制代码


注意:


你可以假设:


  • 0 <= amount (总金额) <= 5000
  • 1 <= coin (硬币面额) <= 5000
  • 硬币种类不超过 500 种
  • 结果符合 32 位符号整数


完全背包(朴素解法)



在上一题 [322. 零钱兑换] 中,我们求的是「取得特定价值所需要的最小物品个数」。


对于本题,我们求的是「取得特定价值的方案数量」。


求的东西不一样,但问题的本质没有发生改变,同样属于「组合优化」问题。


你可以这样来理解什么是「组合问题」:


被选物品之间不需要满足特定关系,只需要选择物品,以达到「全局最优」或者「特定状态」即可。


同时硬币相当于我们的物品,每种硬币可以选择「无限次」,很自然的想到「完全背包」。


这时候可以将「完全背包」的状态定义搬过来进行“微调”:


定义 f[i][j]f[i][j] 为考虑前 ii 件物品,凑成总和为 jj 的方案数量。


为了方便初始化,我们一般让 f[0][x]f[0][x] 代表不考虑任何物品的情况。


因此我们有显而易见的初始化条件:f[0][0] = 1f[0][0]=1,其余 f[0][x] = 0f[0][x]=0


代表当没有任何硬币的时候,存在凑成总和为 0 的方案数量为 1;凑成其他总和的方案不存在。


当「状态定义」与「基本初始化」有了之后,我们不失一般性的考虑 f[i][j]f[i][j] 该如何转移。


对于第 ii 个硬币我们有两种决策方案:


  • 不使用该硬币:

f[i][j] = f[i - 1][j]f[i][j]=f[i1][j]

  • 使用该硬币:由于每个硬币可以被选择多次(容量允许的情况下),因此方案数量应当是选择「任意个」该硬币的方案总和:


f[i][j] = \sum_{k = 1}^{\left \lfloor {j / val} \right \rfloor}f[i - 1][j - k * val], val = nums[i - 1]f[i][j]=k=1j/valf[i1][jkval],val=nums[i1]


代码:


class Solution {
    public int change(int cnt, int[] cs) {
        int n = cs.length;
        int[][] f = new int[n + 1][cnt + 1];
        f[0][0] = 1;
        for (int i = 1; i <= n; i++) {
            int val = cs[i - 1];
            for (int j = 0; j <= cnt; j++) {
                f[i][j] = f[i - 1][j];
                for (int k = 1; k * val <= j; k++) {
                    f[i][j] += f[i - 1][j - k * val];  
                }
            }
        }
        return f[n][cnt];
    }
}
复制代码


  • 时间复杂度:共有 n * cntncnt 个状态需要转移,每个状态转移最多遍历 cntcnt 次。整体复杂度为 O(n * cnt^2)O(ncnt2)
  • 空间复杂度:O(n * cnt)O(ncnt)


完全背包(一维优化)



显然二维完全背包求解方案复杂度有点高。


nn 的数据范围为 10^2102cntcnt 的数据范围为 10^3103,总的计算量为 10^8108 以上,处于超时边缘(实际测试可通过)。


我们需要对其进行「降维优化」,可以使用最开始讲的 数学分析方式,或者上一讲讲的 换元优化方式 进行降维优化。


由于 数学分析方式 十分耗时,我们用得更多的 换元优化方式。两者同样具有「可推广」特性。


因为后者更为常用,所以我们再来回顾一下如何进行 换元一维优化


  1. 在二维解法的基础上,直接取消「物品维度」
  2. 确保「容量维度」的遍历顺序为「从小到大」(适用于「完全背包」)
  3. 将形如 f[i - 1][j - k * val]f[i1][jkval] 的式子更替为 f[j - val]f[jval],同时解决「数组越界」问题(将物品维度的遍历修改为从 valval 开始)


代码:


class Solution {
    public int change(int cnt, int[] cs) {
        int n = cs.length;
        int[] f = new int[cnt + 1];
        f[0] = 1;
        for (int i = 1; i <= n; i++) {
            int val = cs[i - 1];
            for (int j = val; j <= cnt; j++) {
                f[j] += f[j - val];
            }
        }
        return f[cnt];
    }
}
复制代码


  • 时间复杂度:共有 n * cntncnt 个状态需要转移,整体复杂度为 O(n * cnt)O(ncnt)
  • 空间复杂度:O(cnt)O(cnt)


总结



[322. 零钱兑换] 和 本篇的「518. 零钱兑换 II」本质是一样的。


之所将两题分开成两篇【练习】,主要是为了加强大家对于「一维优化」的熟练度。


上来先写一个「二维朴素版」然后再进行「数学分析」推导这样的做法太慢了,不适合于比赛或者笔试情景。


我们应当做到:上手就能写出「一维优化」版本,但同时在脑中思考的是二维的递推逻辑 ~


最后



这是我们「刷穿 LeetCode」系列文章的第 No.518 篇,系列开始于 2021/01/01,截止于起始日 LeetCode 上共有 1916 道题目,部分是有锁题,我们将先将所有不带锁的题目刷完。


在这个系列文章里面,除了讲解解题思路以外,还会尽可能给出最为简洁的代码。如果涉及通解还会相应的代码模板。


为了方便各位同学能够电脑上进行调试和提交代码,我建立了相关的仓库:github.com/SharingSour…


在仓库地址里,你可以看到系列文章的题解链接、系列文章的相应代码、LeetCode 原题链接和其他优选题解。

相关文章
|
3月前
|
资源调度 安全 Java
Java 大数据在智能教育在线实验室设备管理与实验资源优化配置中的应用实践
本文探讨Java大数据技术在智能教育在线实验室设备管理与资源优化中的应用。通过统一接入异构设备、构建四层实时处理管道及安全防护双体系,显著提升设备利用率与实验效率。某“双一流”高校实践显示,设备利用率从41%升至89%,等待时间缩短78%。该方案降低管理成本,为教育数字化转型提供技术支持。
88 1
|
3月前
|
消息中间件 机器学习/深度学习 Java
java 最新技术驱动的智能教育在线实验室设备管理与实验资源优化实操指南
这是一份基于最新技术的智能教育在线实验室设备管理与实验资源优化的实操指南,涵盖系统搭建、核心功能实现及优化策略。采用Flink实时处理、Kafka消息队列、Elasticsearch搜索分析和Redis缓存等技术栈,结合强化学习动态优化资源调度。指南详细描述了开发环境准备、基础组件部署、数据采集与处理、模型训练、API服务集成及性能调优步骤,支持高并发设备接入与低延迟处理,满足教育机构数字化转型需求。代码已提供下载链接,助力快速构建智能化实验室管理系统。
126 44
|
3月前
|
缓存 监控 Cloud Native
Java Solon v3.2.0 高并发与低内存实战指南之解决方案优化
本文深入解析了Java Solon v3.2.0框架的实战应用,聚焦高并发与低内存消耗场景。通过响应式编程、云原生支持、内存优化等特性,结合API网关、数据库操作及分布式缓存实例,展示其在秒杀系统中的性能优势。文章还提供了Docker部署、监控方案及实际效果数据,助力开发者构建高效稳定的应用系统。代码示例详尽,适合希望提升系统性能的Java开发者参考。
157 4
Java Solon v3.2.0 高并发与低内存实战指南之解决方案优化
|
2月前
|
机器学习/深度学习 分布式计算 Java
Java 大视界 -- Java 大数据机器学习模型在遥感图像土地利用分类中的优化与应用(199)
本文探讨了Java大数据与机器学习模型在遥感图像土地利用分类中的优化与应用。面对传统方法效率低、精度差的问题,结合Hadoop、Spark与深度学习框架,实现了高效、精准的分类。通过实际案例展示了Java在数据处理、模型融合与参数调优中的强大能力,推动遥感图像分类迈向新高度。
|
2月前
|
机器学习/深度学习 存储 Java
Java 大视界 -- Java 大数据机器学习模型在游戏用户行为分析与游戏平衡优化中的应用(190)
本文探讨了Java大数据与机器学习模型在游戏用户行为分析及游戏平衡优化中的应用。通过数据采集、预处理与聚类分析,开发者可深入洞察玩家行为特征,构建个性化运营策略。同时,利用回归模型优化游戏数值与付费机制,提升游戏公平性与用户体验。
|
2月前
|
缓存 Java 数据库
Java 项目分层架构实操指南及长尾关键词优化方案
本指南详解基于Spring Boot与Spring Cloud的Java微服务分层架构,以用户管理系统为例,涵盖技术选型、核心代码实现、服务治理及部署实践,助力掌握现代化Java企业级开发方案。
139 2
|
3月前
|
安全 Java Docker
Docker 部署 Java 应用实战指南与长尾优化方案
本文详细介绍了Docker容器化部署Java应用的最佳实践。首先阐述了采用多阶段构建和精简JRE的镜像优化技术,可将镜像体积减少60%。其次讲解了资源配置、健康检查、启动优化等容器化关键配置,并演示了Spring Boot微服务的多模块构建与Docker Compose编排方案。最后深入探讨了Kubernetes生产部署、监控日志集成、灰度发布策略以及性能调优和安全加固措施,为Java应用的容器化部署提供了完整的解决方案指南。文章还包含大量可落地的代码示例,涵盖从基础到高级的生产环境实践。
157 3
|
2月前
|
安全 算法 Java
Java 多线程:线程安全与同步控制的深度解析
本文介绍了 Java 多线程开发的关键技术,涵盖线程的创建与启动、线程安全问题及其解决方案,包括 synchronized 关键字、原子类和线程间通信机制。通过示例代码讲解了多线程编程中的常见问题与优化方法,帮助开发者提升程序性能与稳定性。
124 0
|
2月前
|
Java API 调度
从阻塞到畅通:Java虚拟线程开启并发新纪元
从阻塞到畅通:Java虚拟线程开启并发新纪元
282 83

热门文章

最新文章