【机器学习中的矩阵求导】(三)矩阵向量求导(微分法)

简介: 从上面可以发现:标量对向量的求导,和向量的微分,之间存在一个转置的一项。推广到矩阵微分:

一、矩阵微分

我们熟悉的标量的微分:image.png

二、矩阵微分的性质

image.png

三、使用微分法求解矩阵向量求导

3.1 迹函数的技巧

image.png

image.png

image.png

image.png



相关文章
|
5月前
|
机器学习/深度学习 存储 Kubernetes
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
|
10月前
|
机器学习/深度学习 Python
机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况
本文介绍了机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况,而ROC曲线则通过假正率和真正率评估二分类模型性能。文章还提供了Python中的具体实现示例,展示了如何计算和使用这两种工具来评估模型。
397 8
|
机器学习/深度学习 Serverless Python
`sklearn.metrics`是scikit-learn库中用于评估机器学习模型性能的模块。它提供了多种评估指标,如准确率、精确率、召回率、F1分数、混淆矩阵等。这些指标可以帮助我们了解模型的性能,以便进行模型选择和调优。
`sklearn.metrics`是scikit-learn库中用于评估机器学习模型性能的模块。它提供了多种评估指标,如准确率、精确率、召回率、F1分数、混淆矩阵等。这些指标可以帮助我们了解模型的性能,以便进行模型选择和调优。
|
机器学习/深度学习 搜索推荐 算法
【阿旭机器学习实战】【37】电影推荐系统---基于矩阵分解
【阿旭机器学习实战】【37】电影推荐系统---基于矩阵分解
|
机器学习/深度学习 Python
【Python 机器学习专栏】混淆矩阵与 ROC 曲线分析
【4月更文挑战第30天】本文介绍了机器学习中评估模型性能的两种工具——混淆矩阵和ROC曲线。混淆矩阵显示了模型在不同类别上的预测情况,包括真正例、假正例、真反例和假反例,帮助评估模型错误类型和数量。ROC曲线则通过假正率和真正率展示了模型的二分类性能,曲线越接近左上角,性能越好。文章还提供了Python中计算混淆矩阵和ROC曲线的代码示例,强调它们在模型选择、参数调整和理解模型行为中的应用价值。
453 0
|
机器学习/深度学习 搜索推荐 算法
python机器学习:推荐系统实现(以矩阵分解来协同过滤)
python机器学习:推荐系统实现(以矩阵分解来协同过滤)
|
机器学习/深度学习 JavaScript Python
GEE机器学习——混淆矩阵Classifier.confusionMatrix()和errorMatrix()和exlain()的用法(js和python代码)
GEE机器学习——混淆矩阵Classifier.confusionMatrix()和errorMatrix()和exlain()的用法(js和python代码)
374 0
|
机器学习/深度学习 人工智能 算法
【人工智能】<吴恩达-机器学习>批量梯度下降&矩阵和向量运算概述
【1月更文挑战第26天】【人工智能】<吴恩达-机器学习>批量梯度下降&矩阵和向量运算概述
|
4月前
|
机器学习/深度学习 数据采集 人工智能
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。
|
10月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
1031 6

热门文章

最新文章