《CUDA高性能并行计算》----0.7 本书代码

简介: 本书应用程序的代码可以通过www.cudaforengineers.com获取。虽然书中采用了一些代码片断和“骨架”代码(skeleton code),但标记为“代码清单”的代码(包含行号)是真实可运行代码的一部分。

本 节 书 摘 来 自 华 章 出 版 社 《CUDA高性能并行计算》 一 书 中 的 第0章,第0.7节, 作 者 CUDA for Engineers: An Introduction to High-Performance Parallel Computing[美] 杜安·斯托尔蒂(Duane Storti)梅特·尤尔托卢(Mete Yurtoglu) 著,苏统华 项文成 李松泽 姚宇鹏 孙博文 译 , 更 多 章 节 内 容 可 以 访 问 云 栖 社 区 “华 章 计 算 机” 公 众 号 查 看。

0.7 本书代码

本书应用程序的代码可以通过www.cudaforengineers.com获取。虽然书中采用了一些代码片断和“骨架”代码(skeleton code),但标记为“代码清单”的代码(包含行号)是真实可运行代码的一部分。我们努力确保代码经过测试,可以成功运行于多个系统,包括Windows 7、Windows 8.1、Linux操作系统(Ubuntu 14.04 LTS)和OS X 10.10(除了第3章最后有一个确实会发生异常的例子)。

本书介绍的代码在创建阶段非常在意简洁性、可读性、可解释性和易懂性。这一指导思想允许我们在很多时候并不需要考虑很多商业代码需要的功能,如错误检测和性能评价等。有关这些功能的主题统一放到了附录D中,所以你可以根据需要添加它们。

CUDA应用程序既可以用C语言也可以用C++语言的编程风格进行开发。我们主要用C语言编程风格,以尽量减少对读者所需编程背景的要求。

相关文章
|
缓存 数据安全/隐私保护 Docker
安装gitlab
安装gitlab
628 0
|
机器学习/深度学习 人工智能 负载均衡
基于 NVIDIA Megatron-Core 的 MoE LLM 实现和训练优化
本文将分享阿里云人工智能平台 PAI 团队与 NVIDIA Megatron-Core 团队在 MoE (Mixture of Experts) 大型语言模型(LLM)实现与训练优化上的创新工作。
|
26天前
|
数据采集 人工智能 自然语言处理
让AI读懂代码需求:模块化大模型微调助力高效代码理解与迁移
本文介绍了一种解决开源项目代码升级中“用户需求关联相应代码”难题的创新方法。面对传统Code RAG和Code Agent在召回率、准确率和稳定性上的不足,以及领域“黑话”和代码风格差异带来的挑战,作者团队提出并实践了一套以大模型微调(SFT)为核心的解决方案。
281 21
|
11月前
|
开发框架 Java .NET
C#与Java
在动态且不断发展的软件开发世界中,Java 和 C# 是两个巨头,每个都有自己独特的优势、理念和生态系统。本文深入比较了 Java 和 C#,探讨了它们的历史背景、语言特性、性能指标、跨平台功能等。
316 19
C#与Java
|
10月前
|
人工智能 并行计算 流计算
【AI系统】GPU 架构与 CUDA 关系
本文介绍了英伟达GPU硬件基础概念,重点解析了A100 GPU架构中的GPC、TPC、SM等组件及其功能。接着深入讲解了CUDA并行计算平台和编程模型,特别是CUDA线程层次结构。最后,文章探讨了如何根据CUDA核心数量、核心频率等因素计算GPU的算力峰值,这对于评估大模型训练的算力需求至关重要。
609 3
|
11月前
|
JavaScript
JS中的splice的三种用法(删除,替换,插入)
JS中的splice的三种用法(删除,替换,插入)
925 4
|
并行计算 TensorFlow 算法框架/工具
Windows11+CUDA12.0+RTX4090如何配置安装Tensorflow2-GPU环境?
本文介绍了如何在Windows 11操作系统上,配合CUDA 12.0和RTX4090显卡,通过创建conda环境、安装特定版本的CUDA、cuDNN和TensorFlow 2.10来配置TensorFlow GPU环境,并提供了解决可能遇到的cudnn库文件找不到错误的具体步骤。
1849 3
|
存储 人工智能 编解码
阿里云gpu云服务器最新收费标准、活动价格与实例规格选择参考
随着人工智能、高性能计算等领域的快速发展,GPU云服务器因其强大的计算能力和灵活的资源分配方式,成为越来越多企业和个人用户的首选。2024年,阿里云针对GPU云服务器推出了新的收费标准及活动,gn6v、gn7i、gn6i等实例的gpu云服务器有优惠,本文为大家介绍2024年,阿里云gpu云服务器最新收费标准、活动价格与实例规格选择参考。
阿里云gpu云服务器最新收费标准、活动价格与实例规格选择参考
|
PyTorch 算法框架/工具 数据格式
将huggingface的大模型转换为safetensor格式
将huggingface的大模型转换为safetensor格式
650 1
|
机器学习/深度学习 算法 自动驾驶
深度强化学习在大模型中的应用:现状、问题和发展
强化学习在大模型中的应用具有广泛的潜力和机会。通过使用强化学习算法,如DQN、PPO和TRPO,可以训练具有复杂决策能力的智能体,在自动驾驶、机器人控制和游戏玩家等领域取得显著成果。然而,仍然存在一些挑战,如样本效率、探索与利用平衡以及可解释性问题。未来的研究方向包括提高样本效率、改进探索策略和探索可解释的强化学习算法,以进一步推动强化学习在大模型中的应用。
3038 3

热门文章

最新文章