☆打卡算法☆LeetCode 105、从前序与中序遍历序列构造二叉树 算法解析

简介: “给定两个整数数组pre和ino,其中pre是二叉树的先序遍历,ino是二叉树的中序遍历,构造二叉树返回其根节点。”

一、题目


1、算法题目

“给定两个整数数组pre和ino,其中pre是二叉树的先序遍历,ino是二叉树的中序遍历,构造二叉树返回其根节点。”

题目链接:

来源:力扣(LeetCode)

链接:105. 从前序与中序遍历序列构造二叉树 - 力扣(LeetCode) (leetcode-cn.com)


2、题目描述

给定两个整数数组 preorder 和 inorder ,其中 preorder 是二叉树的先序遍历, inorder 是同一棵树的中序遍历,请构造二叉树并返回其根节点。

网络异常,图片无法展示
|

示例 1:
输入: preorder = [3,9,20,15,7], inorder = [9,3,15,20,7]
输出: [3,9,20,null,null,15,7]
复制代码
示例 2:
输入: preorder = [-1], inorder = [-1]
输出: [-1]
复制代码


二、解题


1、思路分析

真是不停的被二叉树折磨,这道题是由两个整数数组,一个先序遍历一个中序遍历,构造出二叉树返回根节点。

首先来了解一下什么是先序遍历,什么是中序遍历。

先序遍历:

  • 先遍历根节点
  • 随后递归地遍历左子树
  • 最后递归地遍历右子树

中序遍历:

  • 先递归地遍历左子树
  • 随后遍历根节点
  • 最后递归地遍历右子树

根据先序遍历和中序遍历的性质,我们就可以得到本题的解题。

  • 在中序遍历中定位到根节点,就可以知道左子树和右子树的节点数。
  • 前序遍历跟中序遍历的长度是相同的,可以将中序遍历的结果对应到前序遍历的结果中
  • 根据前序遍历和中序遍历的结果,以及右子树的前序遍历和中序遍历结果,我们就可以递归地构造出左子树和右子树
  • 将这两颗字数连接到根节点的左右位置


2、代码实现

代码参考:

class Solution {
    private Map<Integer, Integer> indexMap;
    public TreeNode myBuildTree(int[] preorder, int[] inorder, int preorder_left, int preorder_right, int inorder_left, int inorder_right) {
        if (preorder_left > preorder_right) {
            return null;
        }
        // 前序遍历中的第一个节点就是根节点
        int preorder_root = preorder_left;
        // 在中序遍历中定位根节点
        int inorder_root = indexMap.get(preorder[preorder_root]);
        // 先把根节点建立出来
        TreeNode root = new TreeNode(preorder[preorder_root]);
        // 得到左子树中的节点数目
        int size_left_subtree = inorder_root - inorder_left;
        // 递归地构造左子树,并连接到根节点
        // 先序遍历中「从 左边界+1 开始的 size_left_subtree」个元素就对应了中序遍历中「从 左边界 开始到 根节点定位-1」的元素
        root.left = myBuildTree(preorder, inorder, preorder_left + 1, preorder_left + size_left_subtree, inorder_left, inorder_root - 1);
        // 递归地构造右子树,并连接到根节点
        // 先序遍历中「从 左边界+1+左子树节点数目 开始到 右边界」的元素就对应了中序遍历中「从 根节点定位+1 到 右边界」的元素
        root.right = myBuildTree(preorder, inorder, preorder_left + size_left_subtree + 1, preorder_right, inorder_root + 1, inorder_right);
        return root;
    }
    public TreeNode buildTree(int[] preorder, int[] inorder) {
        int n = preorder.length;
        // 构造哈希映射,帮助我们快速定位根节点
        indexMap = new HashMap<Integer, Integer>();
        for (int i = 0; i < n; i++) {
            indexMap.put(inorder[i], i);
        }
        return myBuildTree(preorder, inorder, 0, n - 1, 0, n - 1);
    }
}
复制代码

网络异常,图片无法展示
|


3、时间复杂度

时间复杂度 : O(n)

其中n是树中的节点个数。

空间复杂度: O(n)

其中n是树中的节点个数。


三、总结

在中序遍历中对根节点进行定位时,比较容易的方法是扫描中序遍历的结果找出根节点,但是这样做时间复杂度较高。

所以,就使用了哈希表来帮助我们快速的定位到根节点。

对于哈希映射中每个键值对,值表示其在中序遍历中出现的位置,键表示其元素的值。



相关文章
|
19天前
|
存储 C++ 索引
最长连续序列(每天刷力扣hot100系列)
本题使用哈希表法求最长连续序列。利用unordered_set存储去重元素,遍历集合时仅当num-1不存在时才作为起点向后扩展,统计连续长度,时间复杂度O(n),空间复杂度O(n)。相比unordered_map更高效,因无需存储值。
|
4月前
|
Go
【LeetCode 热题100】DP 实战进阶:最长递增子序列、乘积最大子数组、分割等和子集(力扣300 / 152/ 416 )(Go语言版)
本文深入解析三道经典的动态规划问题:**最长递增子序列(LIS)**、**乘积最大子数组** 和 **分割等和子集**。 - **300. LIS** 通过 `dp[i]` 表示以第 `i` 个元素结尾的最长递增子序列长度,支持 O(n²) 动态规划与 O(n log n) 的二分优化。 - **152. 乘积最大子数组** 利用正负数特性,同时维护最大值与最小值的状态转移方程。 - **416. 分割等和子集** 转化为 0-1 背包问题,通过布尔型 DP 实现子集和判断。 总结对比了三题的状态定义与解法技巧,并延伸至相关变种问题,助你掌握动态规划的核心思想与灵活应用!
153 1
|
6月前
|
Go 索引 Perl
【LeetCode 热题100】【二叉树构造题精讲:前序 + 中序建树 & 有序数组构造 BST】(详细解析)(Go语言版)
本文详细解析了二叉树构造的两类经典问题:通过前序与中序遍历重建二叉树(LeetCode 105),以及将有序数组转化为平衡二叉搜索树(BST,LeetCode 108)。文章从核心思路、递归解法到实现细节逐一拆解,强调通过索引控制子树范围以优化性能,并对比两题的不同构造逻辑。最后总结通用构造套路,提供进阶思考方向,帮助彻底掌握二叉树构造类题目。
297 9
|
算法
Leetcode 初级算法 --- 数组篇
Leetcode 初级算法 --- 数组篇
115 0
|
11月前
|
存储 算法 Java
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
244 4
|
算法
测试工程师的技能升级:LeetCode算法挑战与职业成长
这篇文章通过作者亲身体验LeetCode算法题的过程,探讨了测试工程师学习算法的重要性,并强调了算法技能对于测试职业成长的必要性。
197 1
测试工程师的技能升级:LeetCode算法挑战与职业成长
【LeetCode 37】106.从中序与后序遍历构造二叉树
【LeetCode 37】106.从中序与后序遍历构造二叉树
92 0
|
算法 C++
第一周算法设计与分析 E : 构造回文串
这篇文章介绍了解决算法问题"构造回文串"的方法,即判断给定的整数N(视为字符串)是否可以通过在前面添加任意个0(或不添加)来构造一个回文串,并给出了相应的C++代码实现。
|
存储 算法 Java
LeetCode经典算法题:打家劫舍java详解
LeetCode经典算法题:打家劫舍java详解
159 2
|
人工智能 算法 Java
LeetCode经典算法题:井字游戏+优势洗牌+Dota2参议院java解法
LeetCode经典算法题:井字游戏+优势洗牌+Dota2参议院java解法
167 1