5分钟快速了解MySQL索引的各种类型

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,高可用系列 2核4GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 索引是数据库存储引擎用于快速查找到指定数据的一种数据结构。可以用新华字典做类比:如果新华字典中对每个字的详细解释是数据库中表的记录,那么按部首或拼音等排序的目录就是索引,使用它可以让我们快速查找的某一个字详细解释的位置。

什么是索引?

索引是数据库存储引擎用于快速查找到指定数据的一种数据结构。

可以用新华字典做类比:如果新华字典中对每个字的详细解释是数据库中表的记录,那么按部首或拼音等排序的目录就是索引,使用它可以让我们快速查找的某一个字详细解释的位置。

在MySQL中,存储引擎也是用了类似的方法,先在索引中找到对应的值,然后再根据匹配的索引值找到对应表中记录的位置。

面试中为什么问索引?

之所以在索引在面试中经常被问到,就是因为:索引是数据库的良好性能表现的关键,也是对查询能优化最有效的手段。索引能够轻易地把查询性能提高几个数量级。

然而,糟糕的索引也同样会影响查询性能,当表中的数据量越来越多的时候,索引对性能的影响就越大。在数据量比较少并且负责比较低的时候,糟糕的索引对性能的影响可能不明显,但是当数据量逐渐增多的时候,性能会急剧下降。

索引的类型

经过前面的介绍,我们就进入正题,了解一下MySQL支持的索引类型,以及它们的原理和用法。

不同类型的索引,可以为不同场景提供更好的性能。在MySQL中,索引是在存储引擎层面实现的,而不是在服务器层面实现的。正如大家所知道,MySQL支持多种类型的存储引擎。所以,在不同存储引擎中索引的实现方式并不是一样的,也不是所有类型的索引都被所有存储引擎支持的,即使多个存储引擎支持同一种类型的索引,它底层的实现也有可能是不相同的。

B-Tree索引

B-Tree索引是被大多数MySQL存储引擎支持的,在我们讨论索引时,假如没有特别地说明类型,那么大概率说的就是B-Tree索引了。我们使用B-Tree这个词,是因为MySQL在创建表和其他语句中就使用这个关键字。

然而,在不同存储引擎的底层可能使用不同的数据结构和算法,比如:InnoDB存储引擎内部使用的是B+Tree结构,NDB集群存储引擎内部使用的是T-Tree结构。不同存储引擎用以不同的方式使用B-Tree索引,性能也可能不同,比如:InnoDB的索引上存储的是原数据格式,而MyISAM存储引擎使用前缀压缩技术使索引更小,InnoDB索引的行存储的数据行的主键引用,而MyISAM存储引擎的索引的行存储的是数据行的物理位置。

B-Tree索引的原理

B-Tree索引能够加快访问数据的速度,因为不需要全表扫描就可以快速检索的需要的数据。那么B-Tree索引是怎么做到的呢?我们通过一个简单的例子了解一下InnoDB的B-Tree索引是怎么工作的:

CREATE TABLE `om_address`  (
  `province_name` varchar(255) NOT NULL COMMENT '省',
  `city_name` varchar(255) NOT NULL COMMENT '市',
  `district_name` varchar(255) NOT NULL COMMENT '区',
  `detailed_address` varchar(255) NULL DEFAULT NULL COMMENT '详细地址',
  INDEX `index_province_city_district`(`province_name`, `city_name`, `district_name`) USING BTREE
) ENGINE = InnoDB;

这个表中共有4个字段,分别表示省、市、区和详细地址,还有一个B-Tree索引,其中包含了省、市、区三个字段。因为索引的所有值都是按照顺序存储的,即:节点的左子树比当前节点小,节点的右子树比当前节点大。那么当查询数据时,从索引的根节点开始搜索,根据比较当前节点的索引值向子树进行查找,直到找到对应的索引值,或者根本没有找到。

B-Tree索引的用法

根据B-Tree索引的特点,它可以用于全值匹配、值范围匹配和最左前缀匹配。

  • 全值匹配是指和索引中所有的字段进行匹配,比如:查询黑龙江省哈尔滨市南岗区的数据。
  • 值范围匹配是指索引中字段的某一范围进行匹配,但是必须满足前面字段的全匹配,比如:第一个字段province_name省名称的全匹配,第二个字段city_name城市名称的范围匹配。
  • 最左前缀匹配是指索引中字段的某一开头部分进行匹配,但是必须满足前面字段的全匹配,比如:第一个字段province_name省名称为内蒙古,第二个字段city_name城市名称以“呼”开头。

哈希索引

哈希索引是基于哈希表实现的,用于精确匹配索引所指向的数据。存储引擎对每一行数据的所有索引字段计算出一个哈希码,哈希码是一个比较小的值,并且不同的数据计算出来的哈希码一般情况下也不一样。哈希索引中存放了这个哈希码和指向这个数据行的指针。

在MySQL中,只有Memory存储引擎支持哈希索引,也是Memory存储引擎的默认索引类型。另外,在InnoDB存储引擎中也运用了哈希索引,叫做自适应哈希索引。当某些索引中被非常频繁的使用时,InnoDB存储引擎会在内存中基于B-Tree索引之上再创建一个哈希索引,这样一来使得B-Tree索引也具有的快速哈希查找的优点。

哈希索引因为只需存放对应数据的哈希值,所以索引的结构非常紧凑,占用空间小,同时查询速度也非常快。不过,哈希索引只支持全值等值查询,不能索引字段范围匹配和部分索引字段匹配。

空间数据索引

空间数据索引(R-Tree)主要用于地理数据的存储,会从所有维度来索引数据,查询时可以有效的使用任意维度进行组合查询。 目前,MyISAM存储引擎支持空间数据索引,不过必须使用MySQL的GIS相关的函数来维护数据。

在MySQL中,空间索引只能建立在空间数据类型上,如:GEOMETRY、POINT、LINESTRING等。

全文索引

全文索引不像之前介绍的索引那样直接比较索引中的值,而是直接比较查找的文本中的关键词,它类似于搜索引擎做的事情,不是简单的where条件匹配。

在相同的字段上,可以同时创建全文索引和B-Tree索引,不会有冲突。全文索引适用于match和against操作,不是普通的where条件操作。在MySQL中,只能在类型为CHAR、VARCHAR、TEXT的字段上创建全文索引。

总结

索引是数据库存储引擎用于快速查找到指定数据的一种数据结构,它包括B-Tree索引、哈希索引、空间数据索引、全文索引,其中B-Tree索引是我们最常用到的,InnoDB存储引擎内部使用的是B+Tree结构;哈希索引是基于哈希表实现的,用于精确匹配索引所指向的数据;空间数据索引从所有维度来索引数据,查询时可以有效的使用任意维度进行组合查询;全文索引是直接比较查找的文本中的关键词,类似于搜索引擎。

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
相关文章
|
3月前
|
存储 SQL 关系型数据库
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
|
3月前
|
存储 关系型数据库 MySQL
MySQL数据库索引的数据结构?
MySQL中默认使用B+tree索引,它是一种多路平衡搜索树,具有树高较低、检索速度快的特点。所有数据存储在叶子节点,非叶子节点仅作索引,且叶子节点形成双向链表,便于区间查询。
143 4
|
5月前
|
存储 关系型数据库 MySQL
阿里面试:MySQL 一个表最多 加几个索引? 6个?64个?还是多少?
阿里面试:MySQL 一个表最多 加几个索引? 6个?64个?还是多少?
阿里面试:MySQL 一个表最多 加几个索引? 6个?64个?还是多少?
|
7月前
|
关系型数据库 MySQL 数据库
Mysql的索引
MYSQL索引主要有 : 单列索引 , 组合索引和空间索引 , 用的比较多的就是单列索引和组合索引 , 空间索引我这边没有用到过 单列索引 : 在MYSQL数据库表的某一列上面创建的索引叫单列索引 , 单列索引又分为 ● 普通索引:MySQL中基本索引类型,没有什么限制,允许在定义索引的列中插入重复值和空值,纯粹为了查询数据更快一点。 ● 唯一索引:索引列中的值必须是唯一的,但是允许为空值 ● 主键索引:是一种特殊的唯一索引,不允许有空值 ● 全文索引: 只有在MyISAM引擎、InnoDB(5.6以后)上才能使⽤用,而且只能在CHAR,VARCHAR,TEXT类型字段上使⽤用全⽂文索引。
|
3月前
|
存储 SQL 关系型数据库
MySQL 核心知识与索引优化全解析
本文系统梳理了 MySQL 的核心知识与索引优化策略。在基础概念部分,阐述了 char 与 varchar 在存储方式和性能上的差异,以及事务的 ACID 特性、并发事务问题及对应的隔离级别(MySQL 默认 REPEATABLE READ)。 索引基础部分,详解了 InnoDB 默认的 B+tree 索引结构(多路平衡树、叶子节点存数据、双向链表支持区间查询),区分了聚簇索引(数据与索引共存,唯一)和二级索引(数据与索引分离,多个),解释了回表查询的概念及优化方法,并分析了 B+tree 作为索引结构的优势(树高低、效率稳、支持区间查询)。 索引优化部分,列出了索引创建的六大原则
105 2
|
4月前
|
存储 关系型数据库 MySQL
MySQL覆盖索引解释
总之,覆盖索引就像是图书馆中那些使得搜索变得极为迅速和简单的工具,一旦正确使用,就会让你的数据库查询飞快而轻便。让数据检索就像是读者在图书目录中以最快速度找到所需信息一样简便。这样的效率和速度,让覆盖索引成为数据库优化师傅们手中的尚方宝剑,既能够提升性能,又能够保持系统的整洁高效。
141 9
|
5月前
|
机器学习/深度学习 关系型数据库 MySQL
对比MySQL全文索引与常规索引的互异性
现在,你或许明白了这两种索引的差异,但任何技术决策都不应仅仅基于理论之上。你可以创建你的数据库实验环境,尝试不同类型的索引,看看它们如何影响性能,感受它们真实的力量。只有这样,你才能熟悉它们,掌握什么时候使用全文索引,什么时候使用常规索引,以适应复杂多变的业务需求。
134 12
|
6月前
|
SQL 存储 关系型数据库
MySQL选错索引了怎么办?
本文探讨了MySQL中因索引选择不当导致查询性能下降的问题。通过创建包含10万行数据的表并插入数据,分析了一条简单SQL语句在不同场景下的执行情况。实验表明,当数据频繁更新时,MySQL可能因统计信息不准确而选错索引,导致全表扫描。文章深入解析了优化器判断扫描行数的机制,指出基数统计误差是主要原因,并提供了通过`analyze table`重新统计索引信息的解决方法。
155 3
|
7月前
|
关系型数据库 MySQL Java
【YashanDB知识库】崖山BIT类型对MYSQL兼容问题
【YashanDB知识库】崖山BIT类型对MYSQL兼容问题
|
7月前
|
自然语言处理 关系型数据库 MySQL
MySQL索引有哪些类型?
● 普通索引:最基本的索引,没有任何限制。 ● 唯一索引:索引列的值必须唯一,但可以有空值。可以创建组合索引,则列值的组合必须唯一。 ● 主键索引:是特殊的唯一索引,不可以有空值,且表中只存在一个该值。 ● 组合索引:多列值组成一个索引,用于组合搜索,效率高于索引合并。 ● 全文索引:对文本的内容进行分词,进行搜索。

推荐镜像

更多