数据分析哪家强?Quick BI超强技能大盘点,看看是否有你需要的~

本文涉及的产品
智能商业分析 Quick BI,专业版 50license 1个月
简介: 2021年转眼即过,在这一年时间里,Quick BI完成了6个大版本发布,39个小版本迭代,通过功能侧的重磅升级,来满足不同企业在不同场景下的数据消费需求。一起来看看Quick BI都有哪些新功能和大家见面吧!

To 亲爱的客户、合作伙伴和一直关注我的朋友们:


在新年即将到来的节骨眼,虽然被杭州突然爆发的疫情打乱了脚步,但小鹰的年终大盘点还是如约和大家见面了^.^


速度”和“洞察力”一直是小鹰的长项。回顾2021年,我一直在持续精进:重磅推出了Quick引擎、模板市场、即席分析等高效易用的绝招儿,获得了不少客户和专业机构的肯定,得以再次入围了Gartner魔力象限。当然也一定存在需要补足的空间,需要继续成长。


欢迎大伙儿来看看我的2021年大盘点(也顺便帮我转发哟),来年我会再接再厉哒∩_∩

想说的还有很多,在此长话短说,祝大伙儿来年火力全开,BI(必)胜!


From 你们的小鹰(Quick BI)同学



image.png

【点击收看视频】

相关实践学习
阿里云实时数仓实战 - 用户行为数仓搭建
课程简介 1)学习搭建一个数据仓库的过程,理解数据在整个数仓架构的从采集、存储、计算、输出、展示的整个业务流程。 2)整个数仓体系完全搭建在阿里云架构上,理解并学会运用各个服务组件,了解各个组件之间如何配合联动。 3 )前置知识要求:熟练掌握 SQL 语法熟悉 Linux 命令,对 Hadoop 大数据体系有一定的了解   课程大纲 第一章 了解数据仓库概念 初步了解数据仓库是干什么的 第二章 按照企业开发的标准去搭建一个数据仓库 数据仓库的需求是什么 架构 怎么选型怎么购买服务器 第三章 数据生成模块 用户形成数据的一个准备 按照企业的标准,准备了十一张用户行为表 方便使用 第四章 采集模块的搭建 购买阿里云服务器 安装 JDK 安装 Flume 第五章 用户行为数据仓库 严格按照企业的标准开发 第六章 搭建业务数仓理论基础和对表的分类同步 第七章 业务数仓的搭建  业务行为数仓效果图  
目录
相关文章
|
2月前
|
数据采集 存储 数据可视化
数据分析都要会BI?No!不是所有企业都应该上BI
BI工具已成为数据分析行业的标配,广泛应用于企业决策支持。本文深入解析了BI的重要性、演进历程,并探讨企业是否真正具备实施BI的条件,帮助读者理性评估需求,避免盲目跟风。
|
26天前
|
安全 数据挖掘 BI
三步打通飞书多维表格与Quick BI,让数据分析“飞”起来
本文介绍了如何将多维表格接入Quick BI,实现数据自动同步与深度分析。通过三步操作,即可轻松整合数据,提升效率。
|
5天前
|
SQL 人工智能 搜索推荐
Quick BI V6.0发布:让人人都能拥有的「超级数据分析师」到底强在哪?
阿里巴巴推出首个数据分析Agent“智能小Q”,助力用户快速获取、解读数据并生成洞察报告。Quick BI 6.0深度融合AI Agent能力,通过三重技术体系提升企业级数据分析可靠性,覆盖多行业场景,实现从数据获取到洞察的高效闭环。
|
10月前
|
数据采集 监控 数据可视化
BI工具在数据分析和业务洞察中的应用
BI工具在数据分析和业务洞察中的应用
281 11
|
5月前
|
敏捷开发 存储 SQL
Quick BI × 宜搭:低代码敏捷开发与专业数据分析的完美融合,驱动企业数字化转型新范式
钉钉低代码平台宜搭与瓴羊QuickBI深度融合,提供前端敏捷构建+后端智能决策的解决方案。通过无缝对接的数据收集与分析、一站式数据分析及报表嵌入等功能,实现业务与数据双重赋能。
361 3
|
5月前
|
SQL 自然语言处理 数据可视化
📊 Quick BI 真实体验评测:小白也能快速上手的数据分析工具!
作为一名软件开发工程师,我体验了阿里云的Quick BI工具。从申请试用账号到上传数据、创建数据集,再到搭建仪表板和使用智能小Q功能,整个过程流畅且简单易用。尤其对非专业数据分析人士来说,拖拽式设计和自然语言问数功能极大降低了操作门槛。虽然在试用入口明显度和复杂语义理解上还有提升空间,但整体体验令人满意。Quick BI让我改变了对数据分析的认知,值得推荐给需要快速制作报表的团队成员。
|
8月前
|
安全 数据挖掘 BI
欢迎使用Quick BI,开启您的智能数据分析之旅!
欢迎选择Quick BI作为您的数据分析伙伴!本文将为您介绍一个月全功能免费试用教程,帮助您轻松上手。请确保在PC环境下操作。
861 6
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
727 4
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
在数字化时代,数据分析至关重要,而Python凭借其强大的数据处理能力和丰富的库支持,已成为该领域的首选工具。Python作为基石,提供简洁语法和全面功能,适用于从数据预处理到高级分析的各种任务。Pandas库则像是神兵利器,其DataFrame结构让表格型数据的处理变得简单高效,支持数据的增删改查及复杂变换。配合Matplotlib这一数据可视化的魔法棒,能以直观图表展现数据分析结果。掌握这三大神器,你也能成为数据分析领域的高手!
215 2
|
机器学习/深度学习 算法 数据挖掘
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
本文介绍了2023年第二届钉钉杯大学生大数据挑战赛初赛A题的Python代码分析,涉及智能手机用户监测数据分析中的聚类分析和APP使用情况的分类与回归问题。
270 0
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析

热门文章

最新文章

相关产品

  • 智能商业分析 Quick BI