解放双手,提高生产力,看我如何用 Python 实现自动化剪视频

简介: 人类和动物最本质的区别就是人类懂的制造并使用工具,这是由上古时代一直延续至今的基因所决定的。前段时间朋友的一个业务需要大量的原创短视频,问我是否可以帮忙弄下,我了解了具体需求之后发现不需要很高质量的内容,操作也不是很复杂,完全可以通过 Python 实现自动化操作,也是就把这个事给应承了下来。

人类和动物最本质的区别就是人类懂的制造并使用工具,这是由上古时代一直延续至今的基因所决定的。

前段时间朋友的一个业务需要大量的原创短视频,问我是否可以帮忙弄下,我了解了具体需求之后发现不需要很高质量的内容,操作也不是很复杂,完全可以通过 Python 实现自动化操作,也是就把这个事给应承了下来。

我们知道 PyAutoGUI 是一个通过编程方式来控制鼠标和键盘的 Python 库,那么就从它身上下手了。

安装

Win 和 macOS 的安装命令有所不同。

## windows
py -m pip install pyautogui
## macOS
python3 -m pip install pyautogui

屏幕位置

屏幕上的位置由笛卡尔坐标表示,X 坐标从左上角的 0 开始,向右增加,与数学不同,Y 坐标从左上角 0 开始,向下增加。

因此左上角的像素位于坐标(0,0),如果你的屏幕分辨率为 1920 x 1080,则右下角的像素将为(1919, 1079),因为像素是从坐标 0 开始的。屏幕分辨率大小可以通过 size() 函数获得,当前鼠标位置则可以通过 position() 函数获得。

0,0       X increases -->
+---------------------------+
|                           | Y increases
|                           |     |
|   1920 x 1080 screen      |     |
|                           |     V
|                           |
|                           |
+---------------------------+ 1919, 1079
import pyautogui
x, y = pyautogui.position()
print(x, y)
x, y = pyautogui.size()
print(x, y)
## 输出结果
545 437
1440 900

鼠标移动

鼠标的移动则分为绝对坐标移动和相对坐标移动。

比如你想将鼠标移动到坐标(100,100)处,直接调用 moveTo 函数即可。

import pyautogui
# 将鼠标移动至(100,200)坐标处
pyautogui.moveTo(100, 200)   
# 将鼠标移动至(100,500 坐标处
pyautogui.moveTo(None, 500)  
# 将鼠标移动至(600,500)坐标处
pyautogui.moveTo(600, None)
# 将鼠标移动至(100,200)坐标处,该移动过程是一个持续性过程,耗时 2 秒
pyautogui.moveTo(100, 200, 2)

而 move 函数则是简单的相对移动。

import pyautogui
# 将鼠标移动至(100,200)坐标处
pyautogui.moveTo(100, 200)
# 将鼠标向下移动 50 像素
pyautogui.move(0, 50)
# 将鼠标向左移动 30 像素
pyautogui.move(-30, 0)
# 将鼠标向左移动 30 像素
pyautogui.move(-30, None)

鼠标拖拽

和鼠标移动相比,鼠标拖拽同样分为绝对坐标拖拽和相对坐标拖拽。同样 dragTo 函数使用绝对坐标,drag 使用相对坐标。

import pyautogui
# 按住鼠标左键将目标拖拽至(100,200)坐标处
pyautogui.dragTo(100, 200, button='left')     
# 按住鼠标左键将目标拖拽至(100,200)坐标处,该移动过程是一个持续性过程,耗时 2 秒
pyautogui.dragTo(100, 200, 2, button='left')  
# 按住鼠标右键将目标向右移动 30 个像素,该移动过程是一个持续性过程,耗时 2 秒
pyautogui.drag(30, 0, 2, button='right')

鼠标点击

我们可以通过 click() 函数模拟鼠标单击。

import pyautogui
# 在当前位置单击左键
pyautogui.click()
# 将鼠标移动至(100,200)坐标处,然后单击左键
# 但是这个方法有点奇怪,有时候会失灵,可以使用 moveTo + click
pyautogui.click(x=100, y=200)
# 在当前位置单双击左键
pyautogui.doubleClick()

控制键盘

键盘控制一般常用的就是输入字符串,按下某个按键以及组合键。

import pyautogui
# 输入 “Hello World”
pyautogui.write('Hello world!')
# 按下 enter / F1 键 
pyautogui.press('enter')
pyautogui.press('f1')
# 组合按键 command + a
pyautogui.hotkey('command', 'a')

制作视频

有了以上的基础,就可以开始我们的视频制作了,这次使用的是剪映软件。

这里你需要熟悉一下剪映的操作步骤,基本分为三块:将指定图片拖入视频轨道、调整视频时长、导出。

最终效果如下:


image.gif


# coding=utf-8
import time
import pyautogui
# 将图片拖入轨道
def drag_img_to_track():
    # 选中图片
    pyautogui.moveTo(170, 270)
    pyautogui.doubleClick()
    # 拖拽图片至轨道
    pyautogui.dragTo(120, 600, 1, button='left')
# 调整视频时长
def drag_img_to_3_min():
    # 选中轨道中的第一张图
    pyautogui.moveTo(125, 600)
    pyautogui.click()
    # 拖拽至第三分钟
    pyautogui.moveTo(135, 600)
    pyautogui.dragTo(700, 600, 1, button='left')
# 删除旧的素材
def delete_top_img():
    # 删除轨道中的第二张图片
    pyautogui.moveTo(300, 160)
    pyautogui.doubleClick()
    pyautogui.press("backspace")
    # enter yes
    pyautogui.moveTo(650, 470)
    time.sleep(0.5)
    pyautogui.click()
# 导出
def export(name):
    pyautogui.moveTo(126, 600)
    pyautogui.click()
    pyautogui.hotkey('command', 'e')
    pyautogui.write(name)
    time.sleep(1)
    pyautogui.moveTo(800, 393)
    pyautogui.click()
    time.sleep(20)
    pyautogui.click()
index = 0
count = 2
while index < count:
    drag_img_to_track()
    drag_img_to_3_min()
    delete_top_img()
    export(str(index))
    time.sleep(2)
    index += 1
    print("end..." + str(index))

总结

今天我们通过 pyautogui 实现了全自动制作视频,我们只需要将素材导入到剪映中即可。

由于 gif 大小限制,只录制了一小部分,你可以通过调整主函数中的 count 值来控制制作视频的个数。

目录
相关文章
|
编解码 iOS开发 MacOS
解放双手,提高生产力,看我如何用 Python 实现自动化剪视频
人类和动物最本质的区别就是人类懂的制造并使用工具,这是由上古时代一直延续至今的基因所决定的。 前段时间朋友的一个业务需要大量的原创短视频,问我是否可以帮忙弄下,我了解了具体需求之后发现不需要很高质量的内容,操作也不是很复杂,完全可以通过 Python 实现自动化操作,也是就把这个事给应承了下来。
751 0
解放双手,提高生产力,看我如何用 Python 实现自动化剪视频
|
2月前
|
数据采集 机器学习/深度学习 人工智能
Python:现代编程的首选语言
Python:现代编程的首选语言
261 102
|
2月前
|
数据采集 机器学习/深度学习 算法框架/工具
Python:现代编程的瑞士军刀
Python:现代编程的瑞士军刀
295 104
|
2月前
|
人工智能 自然语言处理 算法框架/工具
Python:现代编程的首选语言
Python:现代编程的首选语言
247 103
|
2月前
|
机器学习/深度学习 人工智能 数据挖掘
Python:现代编程的首选语言
Python:现代编程的首选语言
186 82
|
26天前
|
Python
Python编程:运算符详解
本文全面详解Python各类运算符,涵盖算术、比较、逻辑、赋值、位、身份、成员运算符及优先级规则,结合实例代码与运行结果,助你深入掌握Python运算符的使用方法与应用场景。
156 3
|
26天前
|
数据处理 Python
Python编程:类型转换与输入输出
本教程介绍Python中输入输出与类型转换的基础知识,涵盖input()和print()的使用,int()、float()等类型转换方法,并通过综合示例演示数据处理、错误处理及格式化输出,助你掌握核心编程技能。
354 3
|
1月前
|
并行计算 安全 计算机视觉
Python多进程编程:用multiprocessing突破GIL限制
Python中GIL限制多线程性能,尤其在CPU密集型任务中。`multiprocessing`模块通过创建独立进程,绕过GIL,实现真正的并行计算。它支持进程池、队列、管道、共享内存和同步机制,适用于科学计算、图像处理等场景。相比多线程,多进程更适合利用多核优势,虽有较高内存开销,但能显著提升性能。合理使用进程池与通信机制,可最大化效率。
238 3
|
27天前
|
Java 调度 数据库
Python threading模块:多线程编程的实战指南
本文深入讲解Python多线程编程,涵盖threading模块的核心用法:线程创建、生命周期、同步机制(锁、信号量、条件变量)、线程通信(队列)、守护线程与线程池应用。结合实战案例,如多线程下载器,帮助开发者提升程序并发性能,适用于I/O密集型任务处理。
201 0
|
2月前
|
数据采集 机器学习/深度学习 人工智能
Python:现代编程的多面手
Python:现代编程的多面手
74 0