一文带你了解企业上云数据分析首选产品Quick BI

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
智能商业分析 Quick BI,专业版 50license 1个月
简介: 文章将为大家详细介绍上云数据分析首选产品 Quick BI的核心能力。

日前,国际权威分析机构Gartner发布2021年商业智能和分析平台魔力象限报告,阿里云Quick BI再度入选,并继续成为该领域唯一入选魔力象限的中国企业Gartner ABI领域魔力象限的评选条件全面且严苛。Gartner将围绕厂商们各个维度的能力进行打分,并将表现优先突出的厂商纳入魔力象限。


为让大家更全面了解Quick BI,从以展开进行阐述。

Quick BI是专为云上用户量身打造的智能数据分析和可视化BI产品,帮助企业快速完成从传统的数据分析到数据云化+分析云化的转变,将企业的业务数据产出后以最快的速度被推送到各组织侧消费使用。


1、从阿里内部上云孵化而来

BI在阿里巴巴内部是重要的数据分析工具,应用在一线小二与管理层工作的方方面面,BI工具是数据化运营和数据化决策的基础。

Quick BI汲取了阿里巴巴内部BI设计与应用的经验,产品孵化后通过阿里云对外部企业提供服务。在从IOE时代到分布式数据存储和计算时代过渡的进程中,阿里巴巴发现市场上的BI工具无法满足大数据量计算和快速分析的需求,并且单个工具的能力比较单一,无法满足各种复杂多变的场景。而那时的阿里巴巴,各个业务的需求爆炸式增长,急需一款即使没有数据开发和分析背景的人员也能使用的取数工具。

于是决定自研一套在分布式数据存储框架上的取数工具。

之后一段时间内部不同BU的数据分析类的工具百花齐放,有的面向于复杂的表格,有的用于快速的制作报表,有的只能搭建移动端的报表。

在登月(阿里内部数据全部迁移到ODPS)之后,阿里巴巴推出了阿里内部统一的云上BI分析工具,并且在集团内部不断演化,直至不仅能在各业务线的决策分析中发挥作用,还能贴合电商营销和行业运营构建专题性的数据分析产品。也可直接服务于技术、运营、产品等角色的一线员工快速连接数据生成报表。最终发展成10万员工快速上手的功能强大的BI平台。

除了关注内部员工以外,在服务淘宝、天猫的商家时,发现数据作为企业基础资源,并没有被很好的消费和使用。从2017年开始,更为普世的面向全行业的基础数据分析工具Quick BI开始向云上的客户提供SaaS服务,现在除了公共云,还以敏捷专有云、标准专有云和独立部署的方式向非阿里云客户提供BI服务。


2、数据联合分析能力

Quick BI并非是将内部BI产品原封不动的搬到云上,适合于大型互联网公司的内部产品不一定适合广泛的阿里云上客户。

一开始,Quick BI的定位是帮助客户分析他们在阿里云上存储的数据,所以依照阿里云数据存储的类型进行了全面的接入。

业务本身建立在阿里云上的企业,数据会存储在各种云数据库和存储中,阿里云提供了多种选择,帮助大型企业进行数据的批量处理和流式处理,处理后的结果也会存储在阿里云上,比如Maxcompute、RDS、ADB、Hbase或Hologres等,不同类型的存储提供了对于亿、百亿和千亿以上量级的存储和计算能力。

image.png

现实状态下有的客户还在迁移上云过程中或者本身就是混合部署,他们还有部分数据存储在本地,这就需要对本地和云上的数据进行联合分析,Quick BI通过自建的查询引擎,以及和阿里云Data Lake Analytics产品的合作,提供了较强的对异构数据进行联合分析的能力。

3、如何利用Quick BI 构建数据分析体系

对于大多数主动发起或统一规划的数据中心,数据分析体系或者说报表体系一般是从无序到有序,或者从有序到无序再到有序的路径建立起来的。

IT团队或者数据分析师首先基于对业务的理解,建立面向业务的报表体系,这种固定的报表体系只能满足部分业务的需求,其他需求则需要配置临时报表。随着业务的变化有越来越多的报表需要上线和下线,原本统一固定的报表体系也变得越来越混乱无序,此时又再需要进行重构。

良性演进建立起来的数据分析体系,一般包括决策分析、业务专题分析和临时报表。决策分析和业务专题分析通常会用固定的数据产品形成报表体系,由专业的数据团队维护,可以保持较长周期的稳定。而临时报表可以随着业务的变化临时创建和消亡,当业务稳定后对应的临时报表再沉淀到固定报表体系中。

拥有复杂场景解决能力的Quick BI提供了多种数据分析能力,包括:仪表板、电子表格、自助分析、大屏、自助取数等。

  • 仪表板可创建分析思路经明确的、有一定数据逻辑的报表或者数据产品;
  • 电子表格适合样式复杂,甚至需要对单元格级进行调整的场景,比如银行报送的报表、政府单位逐级填报汇总的报表,只要熟悉Excel不需要会写SQL也能轻松配置;
  • 自助分析适合分析维度和指标都比较多的大宽表,由数据团队构建并保障大宽表的产出,业务人员随着业务需求随时组合不同维度和指标,可以定位数据波动原因,也可分组汇总数据等。这些分析不需要固化,即分析即走;
  • 还有一些场景需要导出大量数据,再进行后续分析或者导入其他系统,比如用户名单、订单明细等,动辄几百万上千万,这时使用自助取数就可以方便的完成。

幻灯片1.png

数据构建

分析和可视化

多端

数然门户

仪表板

数据查询引擎

多益访间

阿里云存储

分析型图农

基型&衣

数若衣建琪

侈动栈

交互式分析

亮级分析

本地数努库

H5,铸,企分

分听引续

SOL毯测

时序及动态分析

数妆数事构建

Pcl

性度视型

应用数据承

加速引掌

多农关联

玫坏见解

痘换获管

电视屏

文件上传

字用管理

订阅

智能引续

自助分析

电子衣格

数坏发存

表甲磺报

自助取数

Quick BI最新产品大图


数据分析和可视化结果能在多种渠道被使用。不止可以在PC浏览器访问,还可以在移动环境下通过手机端访问(可视化效果自动适配手机屏)。针对工厂、会议室、活动现场等场合,还可以投像至电视屏。

无论是通过导出、分享还是订阅,当数据发生变化或出现波动时,便会主动推送给关注这组数据的人。当企业在使用钉钉或者企业微信时,Quick BI可以和他们很好的集成,提高业务沟通中查看数据、分析数据的效率。Quick BI可以给群或单个用户主动发送消息,也可以用系统通知的方式发送信息。

钉钉群甚至可以设置智能机器人,群成员向Quick BI机器人提问,即可查找数据和报表。

4、Quick BI 的数据可视化能力

可视化是BI产品的核心能力,Quick BI认为数据可视化应该从简单的数据呈现向快速的数据分析进行升级,而0代码交互式的可视化操作面板可以明显提升数据分析的效率。

除了通过交互式的操作(钻取、联动、跳转)快速发现数据之间的关联和组成,Quick BI进一步提供全新的快速洞察方式。新增的指标拆解图可以帮助用户自定义分析的指标和纬度,用户可以随时调整分析的维度和拆解的顺序,在指标出现波动和异常时能够快速定位影响因素。

5、生意参谋自助分析

生意参谋自助分析功能针对在集团电商平台开店的卖家推出,Quick BI 和生意参谋联合打造了生意参谋自助分析模块。当天猫、淘宝的卖家在使用生意参谋进行店铺数据化运营过程中,面对现有报表无法满足需求时,可以通过拖拉拽的形式,0代码的对生意参谋内的数据进行自助分析。以前卖家只能勾选维度和指标,选择时间周期,将数据下载到本地再进行分析。现在,在线即可完成分析,做好的仪表板页面也能保存在生意参谋中。目前有近两千家店铺因此受益。

image.png

零售云全域分析

生意参谋自助分析

集团版

单店版

QuickBI

QuickBl

淘系账号SSO

(零售云部署)

淘系账号sSO

(生意谋独立部署)

多店,单品牌,多品牌

生意全景分析

参谋移动端

参谋移动端

报表和电子表格

(移动报表,订阅推送,机器人)

(PC和移动报表,订阅推送,机器人)

(移动报表,订阅推送,机器人)

自定义

店铺PC取数报表

集团PC取数报表

数据集

行业分析模板

报表和电子表格

(默认模板报表,自定义报表)

(商家数据隔离)

(默认模板报表,自定义报表)

品牌

店铺

查询引擎

品牌共享ADS集群

店铺共享ADS集群

上传数据

上传数据

品牌自有空间

品牌自有空间

(只读)

生意参谋ODPS数仓

品牌一方数据

生意参谋单店数据

生意参谋品牌数据

品牌经营数据

其他渠道数据

流量,交易,转化,物流,服务,互动,评价

流量,交易,转化,物流,服务,互动,评价

6、钉钉

2021年初,Quick BI和钉钉团队合作。在钉钉应用市场推出“智能报表”应用,帮助在钉钉上的百万企业分析在钉钉中产生的任务、表单、流程等数据,并支持将钉钉中产生的数据和企业自有的业务数据进行融合分析。

相关实践学习
阿里云实时数仓实战 - 用户行为数仓搭建
课程简介 1)学习搭建一个数据仓库的过程,理解数据在整个数仓架构的从采集、存储、计算、输出、展示的整个业务流程。 2)整个数仓体系完全搭建在阿里云架构上,理解并学会运用各个服务组件,了解各个组件之间如何配合联动。 3 )前置知识要求:熟练掌握 SQL 语法熟悉 Linux 命令,对 Hadoop 大数据体系有一定的了解   课程大纲 第一章 了解数据仓库概念 初步了解数据仓库是干什么的 第二章 按照企业开发的标准去搭建一个数据仓库 数据仓库的需求是什么 架构 怎么选型怎么购买服务器 第三章 数据生成模块 用户形成数据的一个准备 按照企业的标准,准备了十一张用户行为表 方便使用 第四章 采集模块的搭建 购买阿里云服务器 安装 JDK 安装 Flume 第五章 用户行为数据仓库 严格按照企业的标准开发 第六章 搭建业务数仓理论基础和对表的分类同步 第七章 业务数仓的搭建  业务行为数仓效果图  
目录
相关文章
|
2月前
|
数据采集 存储 数据可视化
数据分析都要会BI?No!不是所有企业都应该上BI
BI工具已成为数据分析行业的标配,广泛应用于企业决策支持。本文深入解析了BI的重要性、演进历程,并探讨企业是否真正具备实施BI的条件,帮助读者理性评估需求,避免盲目跟风。
|
6月前
|
SQL 数据可视化 数据挖掘
拒绝天价BI!中小企业私藏的5款低成本报表工具
数据信息化的应用项目中,大都会有报表需求,也通常都要用到报表工具,市面上相关的产品有很多,报表工具,BI 自助报表,大屏可视化,都和报表有关,但是价格都高的离谱。今天,我们一起盘点5款适合中小企业的低成本报表软件。
|
4月前
|
数据采集 人工智能 大数据
大数据+商业智能=精准决策,企业的秘密武器
大数据+商业智能=精准决策,企业的秘密武器
155 27
|
5月前
|
SQL 数据可视化 BI
Quick BI产品测评:从数据连接到智能分析的全流程体验
瓴羊智能商业分析-Quick BI是阿里云旗下的云端智能BI平台,连续五年入选Gartner ABI魔力象限。它提供从数据接入到决策的全链路服务,支持零代码操作、40+可视化组件与OLAP分析,实现跨终端呈现。其创新点包括云原生架构、企业级安全体系及智能决策引擎,适用于零售、金融等行业。评测中,通过免费试用与官方文档,体验了数据准备、仪表板搭建及智能小Q功能,发现智能化能力强大但部分文档需更新优化。
559 67
|
5月前
|
人工智能 自然语言处理 监控
BI 驱动决策,赋能企业增长
在当今商业环境中,CRM系统是企业提升竞争力的关键工具,而BI作为其核心组件,可将数据转化为业务洞察。本文探讨通过最佳BI实践(如数据整合、自助分析与实时监控)实现科学决策,优化企业业绩和客户体验。实际案例显示,BI助力销售策略优化与客户流失预防。未来,AI与ML技术将进一步推动预测分析、NLP交互及嵌入式BI的发展,使企业在数字化竞争中脱颖而出。
|
5月前
|
人工智能 供应链 数据可视化
数字化时代企业怎么做,Quick BI 告诉你
随着企业数字化转型的加速,数据对于企业的用途愈发重要。在过去,数据对于企业来说,可能只是代表过去的战绩,对未来的影响力,企业并没有发掘。而在数字化进程中,数据已成为企业发展的核心战略资产,通过多维赋能推动企业转型升级。数据不仅为精准决策提供科学依据,优化运营效率与资源配置,还能深度挖掘客户需求以驱动个性化服务创新;同时,数据驱动的业务模式重构了产品研发、供应链管理和市场预测体系,助力企业形成差异化竞争优势。
|
5月前
|
运维 监控 数据可视化
产品测评 | 大模型时代下全场景数据消费平台的智能BI—Quick BI深度解析
Quick BI是阿里云旗下的全场景数据消费平台,助力企业实现数据驱动决策。用户可通过连接多种数据源(如本地文件、数据库等)进行数据分析,并借助智能小Q助手以对话形式查询数据或搭建报表。平台支持数据可视化、模板快速构建视图等功能,但目前存在不支持JSON格式文件、部分功能灵活性不足等问题。整体而言,Quick BI在数据分析与展示上表现出强大能力,适合业务类数据处理,未来可在智能化及运维场景支持上进一步优化。
|
5月前
|
敏捷开发 存储 SQL
Quick BI × 宜搭:低代码敏捷开发与专业数据分析的完美融合,驱动企业数字化转型新范式
钉钉低代码平台宜搭与瓴羊QuickBI深度融合,提供前端敏捷构建+后端智能决策的解决方案。通过无缝对接的数据收集与分析、一站式数据分析及报表嵌入等功能,实现业务与数据双重赋能。
316 3
|
6月前
|
人工智能 自然语言处理 数据可视化
大模型+BI:一场关乎企业未来生死的数据智能卡位战 | 【瓴羊数据荟】数据MeetUp第四期
随着大模型技术突破,全球企业迎来数据智能革命。Gartner预测,到2027年,中国80%的企业将采用多模型生成式AI策略。然而,数据孤岛与高门槛仍阻碍价值释放。
213 8
大模型+BI:一场关乎企业未来生死的数据智能卡位战 | 【瓴羊数据荟】数据MeetUp第四期
|
5月前
|
SQL 数据可视化 BI
挖掘QuickBI产品的独特价值——模板市场一键应用篇
模板市场一键应用的独特价值在于: - 所见即所得、丰富的数据看板模板参考,提效业务人员工作方式及时间,对于数据人来说,日常大量的数据需要分析,追求更快地赋能业务决策,同时可以有效降低设计数据看板的时长耗用,是BI产品很重要的一项落地企业业务的能力; - 一键应用按钮减少了业务人员对产品的学习成本、操作成本; - 拖拉拽字段的操作本身是敏捷BI工具相较于其它数据处理方式(如SQL、Python、Excel)的一大超越,但替换数据集的支持直接节省了用户进行拖拉拽,可谓又是一增效点。同时也可以帮助日常业务人员(非专业数据处理人员)快速理解他需要提供的分析数据的数据类型。
114 1

热门文章

最新文章