第 112 天:机器学习算法之蒙特卡洛

简介: 第 112 天:机器学习算法之蒙特卡洛

大家听说过的算法,比如快速排序法、二分查找法,或是像梯度下降法、K 近邻算法,这些算法都有比较严格的逻辑要求,使用起来有些繁琐。


这里我们介绍一个很简单却又通常行之有效的算法:蒙特卡洛方法。严格来说,蒙特卡洛方法并不是特指某一种具体的算法,而是对遵循某种思想的算法的统称,应该是一“类”算法。


“在试验不变的条件下,重复试验多次,随机事件的频率近似于它的概率”,这个统计学规律在数学上被称作“大数定律”,也很符合我们的自然直观。蒙特卡洛方法正是在这个规律的指导下,应用随机手段来逼近一些难以直接求解的数值。


“蒙特卡洛方法”这个名称看起来奇奇怪怪的,其实当中的“蒙特卡洛”指的就是著名赌城蒙特卡洛,传闻是由于该方法的发明者之一乌拉姆的叔叔常在此处输钱而得名——不得不说这个命名确实是很随意哈哈。但是认真来说,赌博与概率/统计的学科发展相依相伴,贯穿始终,既是统计学的发源地,又是概率论的演练场,以赌城之名来命名这样一个完全依赖于随机性的方法,也果然是相得益彰,十分到位。


说到这里不得不提一嘴的是,同为著名赌城,拉斯维加斯也有自己的“冠名算法”,本文就不做详述了,感兴趣的同学可以自行了解。


1. 蒙特卡洛方法的原理


实际上之前我们已经提到过了,蒙特卡洛方法的有效性是建立在大数定律的基础上的,也就是说我们需要通过模拟这样一个不断重复的随机过程,来获得与正常的反复随机试验相同的结果,因此该方法也被称为“蒙特卡洛模拟法”。


随着实验次数(即随机样本)的增加,从统计学意义上来说,得到的结果会越来越精确,与正确结果的误差会越来越小。之所以说是“统计学意义上”,是因为这种方法并不保证 2001 次随机试验的结果一定比 2000 次随机试验的结果更加准确,甚至不能保证比 1 次实验的结果更准确;但总体来看,实验次数越多,得到的结果确实更加可信。


通过上面的分析我们可以看出,蒙特卡洛方法使用的场景是相对比较灵活的,并且更适合对数据的精度要求并不太严格的场合。一般来讲,工业领域的精度要求是完全可以被蒙特卡洛方法满足的。


2. 两个应用实例


这两个实例本质上是一样的


2.1 求 π 的值


凡讲到蒙特卡洛方法,这几乎都是一个必被提及的应用实例。


image.png


上图所示,阴影部分是一个半径为 1 的圆形,另有一个边长为 2 的正方形与之相切。

我们从小就知道,圆面积公式为:


其中,S1 为圆面积,r 为圆半径,π 则是一个常数。


正方形面积公式为:


其中,S2 为正方形面积,l 为正方形边长。


显然,对于特定的正方形,其内切圆的直径一定与正方形边长相等,也就是说圆半径是正方形边长的一半:。这样,我们只要再知道 S1 和 S2 的比值,就可以根据上面这两个面积公式求出 π 的具体数值了。


更进一步地,由于圆形和正方形都具有特殊的对称性,因此我们可以只考察一部分图形,同样可以得到相同的结果:


image.png


那么问题的关键就在于,这个比值到底应该怎么求呢?


方法有很多,最容易想到的就是对圆形求积分,得到对应的面积。对计算机来讲,我们可以返璞归真,用积分的思想,将图中这个扇形划分为大量小“矩形”,对小矩形面积求和即可得到扇形面积。


但是还有一种更加直接的方法。我们可以在图示的正方形中直接随机撒下一些点,然后统计落在扇形内部的点的个数,这个个数比上我们撒下的点的总个数,也就近似等于扇形面积与正方形面积之比。


image.png


结合上述分析,我们可以得到 π 值的计算式:


image.png


好了,铺垫了这么多,接下来让我们直接上代码:


>>> import random>>> REPEAT = 20000 # 实验次数>>> count = 0 # 用于记录落在扇形内部的随机点数>>> for i in range(REPEAT):...     x = random.random() # 生成[0.0, 1.0)区间内的均匀分布随机数...     y = random.random()...     if x*x + y*y < 1.0:...         count += 1...>>> ratio = count / REPEAT>>> PI = 4 * ratio>>> PI3.1388


可以看到,最后得到的 π 值与实际值是比较接近的。


2.2 求积分


同样地,在很多情境下,对于一些比较难以求出解析式的积分,或是即使知道解析式计算起来也比较麻烦的积分,我们并不需要一味地求出准确积分,而只需要通过蒙特卡洛方法得到一个粗糙的近似值即可,大大降低了计算的成本。


实际上,第一个例子的扇形面积可以从积分的角度考虑,而这个例子中的积分也同样可以从面积的角度考虑,二者本质上并无区别。


这里我们就以一个简单的积分为例,演示一下用蒙特卡洛方法求解积分的过程。


image.png


作图工具为 GeoGebra


图中所示函数为,所以应该等于 1/3,也就是 0.666… 。

放码过来看看:


import random
def solve_integral(repeat = 20000) -> float:    count = 0    for i in range(repeat):        x = random.random()        y = random.random()        if y > x*x:            count += 1
    ratio = count / repeat    integral = ratio * 1    return integral
if __name__ == "__main__":    repeat = int(input("请输入实验次数:"))    print(solve_integral(repeat))
# 请输入实验次数:500000# 0.666066


3. 总结


本文简单介绍了一种简单的随机算法——蒙特卡洛方法。这种方法看起来非常“低级”,没有太多的技术含量,但实际上却正体现出了一种简单之美,用概率的方法战胜了复杂的计算,反而十分优雅。


同时这种方法也十分灵活,可以应用于许多不同的领域,实现起来门槛也不高,读者可以另行探究。


参考资料


大数定律-百度百科

蒙特卡洛方法-维基百科

蒙特卡罗方法入门-阮一峰的网络日志

示例代码:Python-100-days



目录
相关文章
|
2天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
11 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
23天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
1月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
52 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
1月前
|
机器学习/深度学习 算法 决策智能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
|
1月前
|
机器学习/深度学习 算法 Python
探索机器学习中的决策树算法:从理论到实践
【10月更文挑战第5天】本文旨在通过浅显易懂的语言,带领读者了解并实现一个基础的决策树模型。我们将从决策树的基本概念出发,逐步深入其构建过程,包括特征选择、树的生成与剪枝等关键技术点,并以一个简单的例子演示如何用Python代码实现一个决策树分类器。文章不仅注重理论阐述,更侧重于实际操作,以期帮助初学者快速入门并在真实数据上应用这一算法。
|
12天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的决策树算法
【10月更文挑战第29天】本文将深入浅出地介绍决策树算法,一种在机器学习中广泛使用的分类和回归方法。我们将从基础概念出发,逐步深入到算法的实际应用,最后通过一个代码示例来直观展示如何利用决策树解决实际问题。无论你是机器学习的初学者还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和指导。
|
1月前
|
机器学习/深度学习 算法 大数据
机器学习入门:梯度下降算法(下)
机器学习入门:梯度下降算法(下)
|
1月前
|
机器学习/深度学习 算法 API
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
|
1月前
|
机器学习/深度学习 算法 数据处理
EM算法对人脸数据降维(机器学习作业06)
本文介绍了使用EM算法对人脸数据进行降维的机器学习作业。首先通过加载ORL人脸数据库,然后分别应用SVD_PCA、MLE_PCA及EM_PCA三种方法实现数据降维,并输出降维后的数据形状。此作业展示了不同PCA变种在人脸数据处理中的应用效果。
31 0

热门文章

最新文章