第34天:Python json&pickle

简介: 第34天:Python json&pickle

在日常开发中,对数据进行序列化和反序列化是常见的数据操作,Python提供了两个模块方便开发者实现数据的序列化操作,即 json 模块和 pickle 模块。这两个模块主要区别如下:


  • json 是一个文本序列化格式,而 pickle 是一个二进制序列化格式;


  • json 是我们可以直观阅读的,而 pickle 不可以;


  • json 是可互操作的,在 Python 系统之外广泛使用,而 pickle 则是 Python 专用的;


  • 默认情况下,json 只能表示 Python 内置类型的子集,不能表示自定义的类;但 pickle 可以表示大量的 Python 数据类型。

Json 模块

Json 是一种轻量级的数据交换格式,由于其具有传输数据量小、数据格式易解析等特点,它被广泛应用于各系统之间的交互操作,作为一种数据格式传递数据。它包含多个常用函数,具体如下:


dumps()函数


dumps()函数可以将 Python 对象编码成 Json 字符串。例如:


#字典转成json字符串 加上ensure_ascii=False以后,可以识别中文, indent=4是间隔4个空格显示
import json         d={'小明':{'sex':'男','addr':'上海','age':26},'小红':{ 'sex':'女','addr':'上海', 'age':24},}print(json.dumps(d,ensure_ascii=False,indent=4))
#执行结果:{    "小明": {        "sex": "男",        "addr": "上海",        "age": 26    },    "小红": {        "sex": "女",        "addr": "上海",        "age": 24    }}


dump()函数


dump()函数可以将 Python对象编码成 json 字符串,并自动写入到文件中,不需要再单独写文件。例如:


#字典转成json字符串,不需要写文件,自动转成的json字符串写入到‘users.json’的文件中 import json                                                                         d={'小明':{'sex':'男','addr':'上海','age':26},'小红':{ 'sex':'女','addr':'上海', 'age':24},}#打开一个名字为‘users.json’的空文件fw =open('users.json','w',encoding='utf-8')
json.dump(d,fw,ensure_ascii=False,indent=4)


loads()函数


loads()函数可以将 json 字符串转换成 Python 的数据类型。例如:



#这是users.json文件中的内容{    "小明":{        "sex":"男",        "addr":"上海",        "age":26    },    "小红":{        "sex":"女",        "addr":"上海",        "age":24    }}
#!/usr/bin/python3#把json串变成python的数据类型   import json  #打开‘users.json’的json文件f =open('users.json','r',encoding='utf-8')#读文件res=f.read()print(json.loads(res))
#执行结果:{'小明': {'sex': '男', 'addr': '上海', 'age': 26}, '小红': {'sex': '女', 'addr': '上海', 'age': 24}}


load()函数


load()loads()功能相似,load()函数可以将 json 字符串转换成 Python 数据类型,不同的是前者的参数是一个文件对象,不需要再单独读此文件。例如:


#把json串变成python的数据类型:字典,传一个文件对象,不需要再单独读文件 import json   #打开文件f =open('users.json','r',encoding='utf-8') print(json.load(f))
#执行结果:{'小明': {'sex': '男', 'addr': '上海', 'age': 26}, '小红': {'sex': '女', 'addr': '上海', 'age': 24}}

Pickle 模块

Pickle 模块与 Json 模块功能相似,也包含四个函数,即 dump()、dumps()、loads() 和 load(),它们的主要区别如下:


  • dumps 和 dump 的区别在于前者是将对象序列化,而后者是将对象序列化并保存到文件中。


  • loads 和 load 的区别在于前者是将序列化的字符串反序列化,而后者是将序列化的字符串从文件读取并反序列化。


dumps()函数


dumps()函数可以将数据通过特殊的形式转换为只有python语言认识的字符串,例如:


import pickle# dumps功能import pickledata = ['A', 'B', 'C','D']  print(pickle.dumps(data))
b'\x80\x03]q\x00(X\x01\x00\x00\x00Aq\x01X\x01\x00\x00\x00Bq\x02X\x01\x00\x00\x00Cq\x03X\x01\x00\x00\x00Dq\x04e.'


dump()函数


dump()函数可以将数据通过特殊的形式转换为只有python语言认识的字符串,并写入文件。例如:


# dump功能with open('test.txt', 'wb') as f:    pickle.dump(data, f)print('写入成功')
写入成功


loads()函数


loads()函数可以将pickle数据转换为python的数据结构。例如:



# loads功能msg = pickle.loads(datastr)print(msg)
['A', 'B', 'C', 'D']


load()函数


load()函数可以从数据文件中读取数据,并转换为python的数据结构。例如:



# load功能with open('test.txt', 'rb') as f:   data = pickle.load(f)print(data)
['A', 'B', 'C', 'D']

总结

本节给大家介绍 Python 中 json&pickle 模块的常用操作,对于实现数据的序列化和反序列化提供了支撑。

示例代码:Python-100-days-day034

参考

https://docs.python.org/3.7/library/pickle.html 

https://docs.python.org/3.7/library/json.html

目录
相关文章
|
1月前
|
JSON 算法 API
Python采集淘宝商品评论API接口及JSON数据返回全程指南
Python采集淘宝商品评论API接口及JSON数据返回全程指南
|
1月前
|
JSON API 数据安全/隐私保护
Python采集淘宝拍立淘按图搜索API接口及JSON数据返回全流程指南
通过以上流程,可实现淘宝拍立淘按图搜索的完整调用链路,并获取结构化的JSON商品数据,支撑电商比价、智能推荐等业务场景。
|
4月前
|
JSON API 数据格式
Python采集京东商品评论API接口示例,json数据返回
下面是一个使用Python采集京东商品评论的完整示例,包括API请求、JSON数据解析
|
30天前
|
JSON 算法 API
Python中的json模块:从基础到进阶的实用指南
本文深入解析Python内置json模块的使用,涵盖序列化与反序列化核心函数、参数配置、中文处理、自定义对象转换及异常处理,并介绍性能优化与第三方库扩展,助你高效实现JSON数据交互。(238字)
260 4
|
4月前
|
存储 JSON API
Python与JSON:结构化数据的存储艺术
Python字典与JSON格式结合,为数据持久化提供了便捷方式。通过json模块,可轻松实现数据序列化与反序列化,支持跨平台数据交换。适用于配置管理、API通信等场景,兼具可读性与高效性,是Python开发中不可或缺的数据处理工具。
174 0
|
28天前
|
XML JSON 数据处理
超越JSON:Python结构化数据处理模块全解析
本文深入解析Python中12个核心数据处理模块,涵盖csv、pandas、pickle、shelve、struct、configparser、xml、numpy、array、sqlite3和msgpack,覆盖表格处理、序列化、配置管理、科学计算等六大场景,结合真实案例与决策树,助你高效应对各类数据挑战。(238字)
144 0
|
2月前
|
JSON API 数据安全/隐私保护
Python采集淘宝评论API接口及JSON数据返回全流程指南
Python采集淘宝评论API接口及JSON数据返回全流程指南
|
3月前
|
JSON 安全 API
Python处理JSON数据的最佳实践:从基础到进阶的实用指南
JSON作为数据交换通用格式,广泛应用于Web开发与API交互。本文详解Python处理JSON的10个关键实践,涵盖序列化、复杂结构处理、性能优化与安全编程,助开发者高效应对各类JSON数据挑战。
266 1
|
8月前
|
XML JSON API
淘宝商品详情API的调用流程(python请求示例以及json数据示例返回参考)
JSON数据示例:需要提供一个结构化的示例,展示商品详情可能包含的字段,如商品标题、价格、库存、描述、图片链接、卖家信息等。考虑到稳定性,示例应基于淘宝开放平台的标准响应格式。
|
9月前
|
数据采集 JSON 测试技术
如何在Python中高效实现CSV到JSON的数据转换
在实际项目中,数据格式转换是常见问题,尤其从CSV到JSON的转换。本文深入探讨了多种转换方法,涵盖Python基础实现、数据预处理、错误处理、性能优化及调试验证技巧。通过分块处理、并行处理等手段提升大文件转换效率,并介绍如何封装为命令行工具或Web API,实现自动化批量处理。关键点包括基础实现、数据清洗、异常捕获、性能优化和单元测试,确保转换流程稳定高效。
457 83