6-1|Python如何将json转化为字符串写到文件内 还保留json格式

简介: 6-1|Python如何将json转化为字符串写到文件内 还保留json格式

Python可以使用`json.dump()`函数将数据转换为JSON格式并写入文件中。以下是示例代码:

```python

import json

# 将字典对象转为JSON字符串并写入文件

d = {"name": "Tom", "age": 20}

with open("data.json", "w") as f:

  json.dump(d, f, ensure_ascii=False, indent=4)

# 读取JSON文件

with open("data.json", "r") as f:

  jsonData = json.load(f)

# 输出JSON数据

print(json.dumps(jsonData, ensure_ascii=False, indent=4))

```

在上面的代码中,我们使用 `dump()` 方法将字典对象转换为JSON格式字符串,并将其写入到文件 `data.json` 中。第三个参数 `ensure_ascii=False` 是为了保证中文在输出时不会乱码,第四个参数 `indent=4` 是为了保证输出的JSON数据易读性。然后我们读取文件中的JSON数据,使用 `dumps()` 方法将JSON对象格式化输出。

运行以上代码后,`data.json` 文件


相关文章
|
10天前
|
JSON Java 数据格式
springboot中表字段映射中设置JSON格式字段映射
springboot中表字段映射中设置JSON格式字段映射
22 1
|
4天前
|
JSON JavaScript Java
对比JSON和Hessian2的序列化格式
通过以上对比分析,希望能够帮助开发者在不同场景下选择最适合的序列化格式,提高系统的整体性能和可维护性。
10 3
|
10天前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
20天前
|
JSON 人工智能 算法
探索LLM推理全阶段的JSON格式输出限制方法
文章详细讨论了如何确保大型语言模型(LLMs)输出结构化的JSON格式,这对于提高数据处理的自动化程度和系统的互操作性至关重要。
WK
|
30天前
|
Python
Python保留关键字
Python 的保留关键字是语言中具有特殊意义的单词,不能用作变量名、函数名或类名等标识符。Python 3.x 版本中的保留关键字包括 `False`、`await`、`else`、`import` 等共 35 个。使用这些关键字作为标识符会导致语法错误。随着 Python 版本的更新,保留关键字可能会有所变化。
WK
30 6
|
7天前
|
JSON API 数据安全/隐私保护
拍立淘按图搜索API接口返回数据的JSON格式示例
拍立淘按图搜索API接口允许用户通过上传图片来搜索相似的商品,该接口返回的通常是一个JSON格式的响应,其中包含了与上传图片相似的商品信息。以下是一个基于淘宝平台的拍立淘按图搜索API接口返回数据的JSON格式示例,同时提供对其关键字段的解释
|
1月前
|
JSON API 数据格式
商品详情数据JSON格式示例参考(api接口)
JSON数据格式的商品详情数据通常包含商品的多个层级信息,以下是一个综合多个来源信息的JSON数据格式的商品详情数据示例参考:
|
2月前
|
XML 存储 JSON
Twaver-HTML5基础学习(19)数据容器(2)_数据序列化_XML、Json
本文介绍了Twaver HTML5中的数据序列化,包括XML和JSON格式的序列化与反序列化方法。文章通过示例代码展示了如何将DataBox中的数据序列化为XML和JSON字符串,以及如何从这些字符串中反序列化数据,重建DataBox中的对象。此外,还提到了用户自定义属性的序列化注册方法。
45 1
|
24天前
|
数据采集 JSON 数据处理
抓取和分析JSON数据:使用Python构建数据处理管道
在大数据时代,电商网站如亚马逊、京东等成为数据采集的重要来源。本文介绍如何使用Python结合代理IP、多线程等技术,高效、隐秘地抓取并处理电商网站的JSON数据。通过爬虫代理服务,模拟真实用户行为,提升抓取效率和稳定性。示例代码展示了如何抓取亚马逊商品信息并进行解析。
抓取和分析JSON数据:使用Python构建数据处理管道
|
13天前
|
JSON 缓存 前端开发
PHP如何高效地处理JSON数据:从编码到解码
在现代Web开发中,JSON已成为数据交换的标准格式。本文探讨了PHP如何高效处理JSON数据,包括编码和解码的过程。通过简化数据结构、使用优化选项、缓存机制及合理设置解码参数等方法,可以显著提升JSON处理的性能,确保系统快速稳定运行。