数据结构与算法之图结构

简介: 图(Graph)是一种复杂的非线性结构,在图结构中,每个元素都可以有零个或多个前驱,也可以有零个或多个后继,也就是说,元素之间的关系是任意的。

常用数据结构与算法实现

以下博客根据B站罗召勇老师视频:数据结构与算法基础-Java版(罗召勇)写的详细笔记


数据结构与算法基础:


数据结构与算法之基础概述


数据结构:


(一)数据结构与算法之数组

(二)数组结构与算法之栈

(三)数据结构与算法之队列

(四)数据结构与算法之链表

(五)数据结构与算法之树结构基础

(六)数据结构与算法之二叉树大全

(七)数据结构与算法之Huffman tree(赫夫曼树 / 霍夫曼树 / 哈夫曼树 / 最优二叉树)

(八)数据结构与算法之多路查找树(2-3树、2-3-4树、B树、B+树)

(九)数据结构与算法之图结构


十大经典算法:


(一)数据结构与算法之冒泡排序(含改进版)

(二)数据结构与算法之选择排序(含改进版)

(三)数据结构与算法之插入排序(含改进版)

(四)数据结构与算法之希尔排序

(五)数据结构与算法之归并排序

(六)数据结构与算法之快速排序

(七)数据结构与算法之堆排序

(八)数据结构与算法之计数排序

(九)数据结构与算法之桶排序

(十)数据结构与算法之基数排序


图的基本概念

图(Graph)是一种复杂的非线性结构,在图结构中,每个元素都可以有零个或多个前驱,也可以有零个或多个后继,也就是说,元素之间的关系是任意的。


常用术语:


术语 含义

顶点 图中的某个结点

边 顶点之间连线

相邻顶点 由同一条边连接在一起的顶点

度 一个顶点的相邻顶点个数

简单路径 由一个顶点到另一个顶点的路线,且没有重复经过顶点

回路 出发点和结束点都是同一个顶点

无向图 图中所有的边都没有方向

有向图 图中所有的边都有方向

无权图 图中的边没有权重值

有权图 图中的边带有一定的权重值

图的结构很简单,就是由顶点 V 集和边 E 集构成,因此图可以表示成 G = (V,E)


无向图:


若顶点 Vi 到 Vj 之间的边没有方向,则称这条边为无向边 (Edge) ,用无序偶对 (Vi,Vj) 来表示。如果图中任意两个顶点之间的边都是无向边,则称该图为无向图 (Undirected graphs)。


如:下图就是一个无向图,由于是无方向的,连接顶点 A 与 D 的边,可以表示无序队列(A,D),也可以写成 (D,A),但不能重复。顶点集合 V = {A,B,C,D};边集合 E = {(A,B),(A,D),(A,C)(B,C),(C,D),}

image.png



有向图:


用有序偶<Vi,Vj>来表示,Vi 称为弧尾 (Tail) , Vj称为弧头 (Head)。 如果图中任意两个顶点之间的边都是有向边,则称该图为有向图 (Directed grahs)。


如:下图就是一个有向图。连接顶点 A 到 D 的有向边就是弧,A是弧尾,D 是弧头, <A, D>表示弧, 注意不能写成<D,A>。其中顶点集合 V = { A,B,C,D}; 弧集合 E = {<A,D>,<B,A>,<B,C>,<C,A>}

image.png


注意:无向边用小括号 “()” 表示,而有向边则是用尖括号"<>"表示


有权图:


有些图的边或弧具有与它相关的数字,这种与图的边或弧相关的数叫做权 (Weight) 。这些权可以表示从一个顶点到另一个顶点的距离或耗费。这种带权的图通常称为网 (Network)。


如下图

image.png


图的存储结构及实现

图结构的常见的两个存储方式: 邻接矩阵 、邻接表


邻接矩阵

image.png

图中的 0 表示该顶点无法通向另一个顶点,相反 1 就表示该顶点能通向另一个顶点


先来看第一行,该行对应的是顶点A,那我们就拿顶点A与其它点一一对应,发现顶点A除了不能通向顶点D和自身,可以通向其它任何一个的顶点


因为该图为无向图,因此顶点A如果能通向另一个顶点,那么这个顶点也一定能通向顶点A,所以这个顶点对应顶点A的也应该是 1


虽然我们确实用邻接矩阵表示了图结构,但是它有一个致命的缺点,那就是矩阵中存在着大量的 0,这在程序中会占据大量的内存。此时我们思考一下,0 就是表示没有,没有为什么还要写,所以我们来看一下第二种表示图结构的方法,它就很好的解决了邻接矩阵的缺陷


代码实现:


顶点类

public class Vertex {
    private String value;
    public Vertex(String value) {
        this.value = value;
    }
    public String getValue() {
        return value;
    }
    public void setValue(String value) {
        this.value = value;
    }
    @Override
    public String toString() {
        return value;
    }
}

图类

public class Graph {
    private Vertex[] vertex; //顶点数组
    private int currentSize; //默认顶点位置
    public int[][] adjMat; //邻接表
    public Graph(int size) {
        vertex = new Vertex[size];
        adjMat = new int[size][size];
    }
    //向图中加入顶点
    public void addVertex(Vertex v) {
        vertex[currentSize++] = v;
    }
    //添加边
    public void addEdge(String v1, String v2) {
        //找出两个点的下标
        int index1 = 0;
        for (int i = 0; i < vertex.length; i++) {
            if (vertex[i].getValue().equals(v1)) {
                index1 = i;
                break;
            }
        }
        int index2 = 0;
        for (int i = 0; i < vertex.length; i++) {
            if (vertex[i].getValue().equals(v2)) {
                index2 = i;
                break;
            }
        }
        //表示两个点互通
        adjMat[index1][index2] = 1;
        adjMat[index2][index1] = 1;
    }
}

测试类

public class Demo {
    public static void main(String[] args) {
        Vertex v1 = new Vertex("A");
        Vertex v2 = new Vertex("B");
        Vertex v3 = new Vertex("C");
        Vertex v4 = new Vertex("D");
        Vertex v5 = new Vertex("E");
        Graph g = new Graph(5);
        g.addVertex(v1);
        g.addVertex(v2);
        g.addVertex(v3);
        g.addVertex(v4);
        g.addVertex(v5);
        //增加边
        g.addEdge("A", "B");
        g.addEdge("A", "C");
        g.addEdge("A", "E");
        g.addEdge("C", "E");
        g.addEdge("C", "D");
        for (int[] a : g.adjMat) {
            System.out.println(Arrays.toString(a));
        }
    }
}

结果值

[0, 1, 1, 0, 1]
[1, 0, 0, 0, 0]
[1, 0, 0, 1, 1]
[0, 0, 1, 0, 0]
[1, 0, 1, 0, 0]

邻接表

邻接表 是由每个顶点以及它的相邻顶点组成的

image.png


如上图:图中最左侧红色的表示各个顶点,它们对应的那一行存储着与它相关联的顶点


顶点A 与 顶点B 、顶点C 、顶点E 相关联

顶点B 与 顶点A 相关联

顶点C 与 顶点A 、顶点D 、顶点E 相关联

顶点D 与 顶点C 相关联

顶点E 与 顶点A 、顶点C 相关联

图的遍历方式及实现

从图中某一顶点出发访遍图中其余顶点,且使每一个顶点仅被访问一次,这一过程就叫做图的遍历


在图结构中,存在着两种遍历搜索的方式,分别是 广度优先搜索 和 深度优先搜索


广度优先搜索

广度优先遍历(BFS):类似于图的层次遍历,它的基本思想是:首先访问起始顶点v,然后选取v的所有邻接点进行访问,再依次对v的邻接点相邻接的所有点进行访问,以此类推,直到所有顶点都被访问过为止


BFS和树的层次遍历一样,采取队列实现,这里添加一个标记数组,用来标记遍历过的顶点

image.png



执行步骤:


1、先把 A 压入队列,然后做出队操作,A 出队

2、把 A 直接相关的顶点 ,B、F 做入队操作

3、B 做出队操作,B 相关的点 C、I、G 做入队操作

4、F 做出队操作,F 相关的点 E 做入队操作

5、C 做出队操作,C 相关的点 D 做入队操作

6、I 做出队操作(I 相关的点B、C、D 都已经做过入队操作了,不能重复入队)

7、G 做出队操作,G 相关的点 H 做入队操作

8、E 做出队操作…

9、D 做出队操作…

10、H 做出队操作,没有元素了

代码实现:


深度优先搜索

深度优先遍历(DFS):从一个顶点开始,沿着一条路径一直搜索,直到到达该路径的最后一个结点,然后回退到之前经过但未搜索过的路径继续搜索,直到所有路径和结点都被搜索完毕


DFS与二叉树的先序遍历类似,可以采用递归或者栈的方式实现

image.png


执行步骤:


1、从 1 出发,路径为:1 -> 2 -> 3 -> 6 -> 9 -> 8 -> 5 -> 4

2、当搜索到 4 时,相邻没有发现未被访问的点,此时我们要往后倒退,找寻别的没搜索过的路径

3、退回到 5 ,相邻没有发现未被访问的点,继续后退

4、退回到 8 ,相邻发现未被访问的点 7,路径为:8 -> 7

5、当搜索到 7 ,相邻没有发现未被访问的点,,此时我们要往后倒退…

6、退回路径7 -> 8 -> 9 -> 6 -> 3 -> 2 -> 1,流程结束

代码实现:


栈类

public class MyStack {
    //栈的底层使用数组来存储数据
    //private int[] elements;
    int[] elements; //测试时使用
    public MyStack() {
        elements = new int[0];
    }
    //添加元素
    public void push(int element) {
        //创建一个新的数组
        int[] newArr = new int[elements.length + 1];
        //把原数组中的元素复制到新数组中
        for (int i = 0; i < elements.length; i++) {
            newArr[i] = elements[i];
        }
        //把添加的元素放入新数组中
        newArr[elements.length] = element;
        //使用新数组替换旧数组
        elements = newArr;
    }
    //取出栈顶元素
    public int pop() {
        //当栈中没有元素
        if (is_empty()) {
            throw new RuntimeException("栈空");
        }
        //取出数组的最后一个元素
        int element = elements[elements.length - 1];
        //创建一个新数组
        int[] newArr = new int[elements.length - 1];
        //原数组中除了最后一个元素其他元素放入新数组
        for (int i = 0; i < elements.length - 1; i++) {
            newArr[i] = elements[i];
        }
        elements = newArr;
        return element;
    }
    //查看栈顶元素
    public int peek() {
        return elements[elements.length - 1];
    }
    //判断栈是否为空
    public boolean is_empty() {
        return elements.length == 0;
    }
    //查看栈的元素个数
    public int size() {
        return elements.length;
    }
}

顶点类

public class Vertex {
    private String value;
    public boolean visited; //访问状态
    public Vertex(String value) {
        super();
        this.value = value;
    }
    public String getValue() {
        return value;
    }
    public void setValue(String value) {
        this.value = value;
    }
    @Override
    public String toString() {
        return value;
    }
}

图类

import mystack.MyStack;
public class Graph {
    private Vertex[] vertex; //顶点数组
    private int currentSize; //默认顶点位置
    public int[][] adjMat; //邻接表
    private MyStack stack = new MyStack(); //栈
    private int currentIndex; //当前遍历的下标
    public Graph(int size) {
        vertex = new Vertex[size];
        adjMat = new int[size][size];
    }
    //向图中加入顶点
    public void addVertex(Vertex v) {
        vertex[currentSize++] = v;
    }
    //添加边
    public void addEdge(String v1, String v2) {
        //找出两个点的下标
        int index1 = 0;
        for (int i = 0; i < vertex.length; i++) {
            if (vertex[i].getValue().equals(v1)) {
                index1 = i;
                break;
            }
        }
        int index2 = 0;
        for (int i = 0; i < vertex.length; i++) {
            if (vertex[i].getValue().equals(v2)) {
                index2 = i;
                break;
            }
        }
        //表示两个点互通
        adjMat[index1][index2] = 1;
        adjMat[index2][index1] = 1;
    }
    //深度优先搜索
    public void dfs() {
        //把第0个顶点标记为已访问状态
        vertex[0].visited = true;
        //把第0个的下标放入栈中
        stack.push(0);
        //打印顶点值
        System.out.println(vertex[0].getValue());
        //遍历
        out:
        while (!stack.is_empty()) {
            for (int i = currentIndex + 1; i < vertex.length; i++) {
                //如果和下一个遍历的元素是通的
                if (adjMat[currentIndex][i] == 1 && vertex[i].visited == false) {
                    //把下一个元素压入栈中
                    stack.push(i);
                    vertex[i].visited = true;
                    System.out.println(vertex[i].getValue());
                    continue out;
                }
            }
            //弹出栈顶元素(往后退)
            stack.pop();
            //修改当前位置为栈顶元素的位置
            if (!stack.is_empty()) {
                currentIndex = stack.peek();
            }
        }
    }
}

测试类

import java.util.Arrays;
public class Demo {
    public static void main(String[] args) {
        Vertex v1 = new Vertex("A");
        Vertex v2 = new Vertex("B");
        Vertex v3 = new Vertex("C");
        Vertex v4 = new Vertex("D");
        Vertex v5 = new Vertex("E");
        Graph g = new Graph(5);
        g.addVertex(v1);
        g.addVertex(v2);
        g.addVertex(v3);
        g.addVertex(v4);
        g.addVertex(v5);
        //增加边
        g.addEdge("A", "B");
        g.addEdge("A", "C");
        g.addEdge("A", "E");
        g.addEdge("C", "E");
        g.addEdge("C", "D");
        for (int[] a : g.adjMat) {
            System.out.println(Arrays.toString(a));
        }
        //深度优先遍历
        g.dfs();
//        A
//        B
//        C
//        E
//        D
    }
}
相关文章
|
2月前
|
存储 缓存 算法
通过优化算法和代码结构来提升易语言程序的执行效率
通过优化算法和代码结构来提升易语言程序的执行效率
|
2月前
|
存储 搜索推荐 算法
【数据结构】树型结构详解 + 堆的实现(c语言)(附源码)
本文介绍了树和二叉树的基本概念及结构,重点讲解了堆这一重要的数据结构。堆是一种特殊的完全二叉树,常用于实现优先队列和高效的排序算法(如堆排序)。文章详细描述了堆的性质、存储方式及其实现方法,包括插入、删除和取堆顶数据等操作的具体实现。通过这些内容,读者可以全面了解堆的原理和应用。
112 16
|
2月前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
55 3
|
3月前
|
存储 缓存 算法
如何通过优化算法和代码结构来提升易语言程序的执行效率?
如何通过优化算法和代码结构来提升易语言程序的执行效率?
|
3月前
|
存储 编译器 C++
【初阶数据结构】掌握二叉树遍历技巧与信息求解:深入解析四种遍历方法及树的结构与统计分析
【初阶数据结构】掌握二叉树遍历技巧与信息求解:深入解析四种遍历方法及树的结构与统计分析
|
3月前
探索顺序结构:栈的实现方式
探索顺序结构:栈的实现方式
|
3月前
|
存储 算法
【数据结构】二叉树——顺序结构——堆及其实现
【数据结构】二叉树——顺序结构——堆及其实现
|
4月前
|
存储 算法 C语言
数据结构基础详解(C语言): 二叉树的遍历_线索二叉树_树的存储结构_树与森林详解
本文从二叉树遍历入手,详细介绍了先序、中序和后序遍历方法,并探讨了如何构建二叉树及线索二叉树的概念。接着,文章讲解了树和森林的存储结构,特别是如何将树与森林转换为二叉树形式,以便利用二叉树的遍历方法。最后,讨论了树和森林的遍历算法,包括先根、后根和层次遍历。通过这些内容,读者可以全面了解二叉树及其相关概念。
|
4月前
|
存储 机器学习/深度学习 C语言
数据结构基础详解(C语言): 树与二叉树的基本类型与存储结构详解
本文介绍了树和二叉树的基本概念及性质。树是由节点组成的层次结构,其中节点的度为其分支数量,树的度为树中最大节点度数。二叉树是一种特殊的树,其节点最多有两个子节点,具有多种性质,如叶子节点数与度为2的节点数之间的关系。此外,还介绍了二叉树的不同形态,包括满二叉树、完全二叉树、二叉排序树和平衡二叉树,并探讨了二叉树的顺序存储和链式存储结构。
|
6月前
|
存储
【数据结构】树和二叉树的概念及结构
数据结构——树和二叉树的概念及结构
97 3
【数据结构】树和二叉树的概念及结构