常用数据结构与算法实现
以下博客根据B站罗召勇老师视频:数据结构与算法基础-Java版(罗召勇)写的详细笔记
数据结构与算法基础:
数据结构与算法之基础概述
数据结构:
(一)数据结构与算法之数组
(二)数组结构与算法之栈
(三)数据结构与算法之队列
(四)数据结构与算法之链表
(五)数据结构与算法之树结构基础
(六)数据结构与算法之二叉树大全
(七)数据结构与算法之Huffman tree(赫夫曼树 / 霍夫曼树 / 哈夫曼树 / 最优二叉树)
(八)数据结构与算法之多路查找树(2-3树、2-3-4树、B树、B+树)
(九)数据结构与算法之图结构
十大经典算法:
(一)数据结构与算法之冒泡排序(含改进版)
(二)数据结构与算法之选择排序(含改进版)
(三)数据结构与算法之插入排序(含改进版)
(四)数据结构与算法之希尔排序
(五)数据结构与算法之归并排序
(六)数据结构与算法之快速排序
(七)数据结构与算法之堆排序
(八)数据结构与算法之计数排序
(九)数据结构与算法之桶排序
(十)数据结构与算法之基数排序
为什么要使用树结构
线性结构中不论是数组还是链表,他们都存在着诟病;比如查找某个数必须从头开始查,消耗较多的时间。使用树结构,在插入和查找的性能上相对都会比线性结构要好
树结构基本概念
示意图
1、根节点:最顶上的唯一的一个;如:A
2、双亲节点:子节点的父节点就叫做双亲节点;如A是B、C、D的双亲节点,B是E、F的双亲节点
3、子节点:双亲节点所产生的节点就是子节点
4、路径:从根节点到目标节点所走的路程叫做路径;如A要访问F,路径为A-B-F
5、节点的度:有多少个子节点就有多少的度(最下面的度一定为0,所以是叶子节点)
6、节点的权:在节点中所存的数字
7、叶子节点:没有子节点的节点,就是没有下一代的节点;如:E、F、C、G
8、子树:在整棵树中将一部分看成也是一棵树,即使只有一个节点也是一棵树,不过这个树是在整个大树职中的,包含的关系
9、层:就是族谱中有多少代的人;如:A是1,B、C、D是2,E、F、G是3
10、树的高度:树的最大的层数:就是层数中的最大值
11、森林:多个树组成的集合
树的种类
无序树:树中任意节点的子节点之间没有顺序关系,这种树称为无序树,也称为自由树;
有序树:树中任意节点的子节点之间有顺序关系,这种树称为有序树;
二叉树:每个节点最多含有两个子树的树称为二叉树;
完全二叉树:对于一颗二叉树,假设其深度为d(d>1)。除了第d层外,其它各层的节点数目均已达最大值,且第d层所有节点从左向右连续地紧密排列,这样的二叉树被称为完全二叉树,其中满二叉树的定义是所有叶节点都在最底层的完全二叉树;
平衡二叉树(AVL树):当且仅当任何节点的两棵子树的高度差不大于1的二叉树;
排序二叉树(二叉查找树(英语:Binary Search Tree),也称二叉搜索树、有序二叉树);
霍夫曼树(用于信息编码):带权路径最短的二叉树称为哈夫曼树或最优二叉树;
B树:一种对读写操作进行优化的自平衡的二叉查找树,能够保持数据有序,拥有多余两个子树。
树的存储与表示
顺序存储:将数据结构存储在固定的数组中,然在遍历速度上有一定的优势,但因所占空间比较大,是非主流二叉树。二叉树通常以链式存储。
链式存储:
由于对节点的个数无法掌握,常见树的存储表示都转换成二叉树进行处理,子节点个数最多为2
常见的一些树的应用场景
1、xml,html等,那么编写这些东西的解析器的时候,不可避免用到树
2、路由协议就是使用了树的算法
3、mysql数据库索引
4、文件系统的目录结构
5、所以很多经典的AI算法其实都是树搜索,此外机器学习中的decision tree也是树结构