机器学习Gradient Descent(梯度下降) + Momentum(动量)寻找局部最优解Local Minima的过程

简介: 机器学习Gradient Descent(梯度下降) + Momentum(动量)寻找局部最优解Local Minima的过程

Gradient Descent(梯度下降) + Momentum(动量)

上次 这里 介绍了Gradient Descent寻找最优解的过程


学习到发现还有一个算法就是加上Momentum(动量,就是上一次Gradient Descent后的步长值)来作为下一次更新位置的参数,这样来寻找局部最优解Local Minima的话,会比单独使用梯度下降法来求解效果更好,有一点像粒子群算法。


Movement:最后一步的移动目前是最小的梯度


首先

同梯度下降法一样,找到一点起始点

image.png

此时的位移(Movement)为0,故

image.png

image.png

  • 紧接着

Gradient Descent来计算

image.png

再计算下一步的

image.png

image.png

由于加了动量,故不再按照梯度下降法的反方向寻找Local Minima了

  • 然后

image.png

image.png

image.png

image.png

注意,此时的θ 2 θ^2θ

2

为Gradient Descent(梯度下降) + Momentum(动量)以后的方向,这样的话寻找 Local MInima会更加精确,避免overfitting,和共轭方向法类似。


然后,以此类推求下去

image.png

具体地,如下图,加上动量后,寻找的过程可能会比单一梯度下降慢,就比如在遇见第一个Local MInima的时候,Gradient Descent或许就会停下来了,而Gradient Descent(梯度下降) + Momentum(动量)呢,当上一步的Movement和g x g^xg

x

的大小相等,方向相反,那么会被抵消;若Movement大于g x g^xg

x

的值,那么会继续往后面去寻找局部最优解,但是最终,还是会回到最好的局部最优解位置来。

image.png

Deep Learning Fitting!!!


相关文章
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
梯度下降求极值,机器学习&深度学习
梯度下降求极值,机器学习&深度学习
60 0
|
2月前
|
机器学习/深度学习 算法 Python
“探秘机器学习的幕后英雄:梯度下降——如何在数据的海洋中寻找那枚失落的钥匙?”
【10月更文挑战第11天】梯度下降是机器学习和深度学习中的核心优化算法,用于最小化损失函数,找到最优参数。通过计算损失函数的梯度,算法沿着负梯度方向更新参数,逐步逼近最小值。常见的变种包括批量梯度下降、随机梯度下降和小批量梯度下降,各有优缺点。示例代码展示了如何用Python和NumPy实现简单的线性回归模型训练。掌握梯度下降有助于深入理解模型优化机制。
37 2
|
2月前
|
机器学习/深度学习 算法 大数据
机器学习入门:梯度下降算法(下)
机器学习入门:梯度下降算法(下)
|
2月前
|
机器学习/深度学习 算法
机器学习入门:梯度下降算法(上)
机器学习入门:梯度下降算法(上)
|
4月前
|
机器学习/深度学习 算法 Python
【绝技揭秘】Andrew Ng 机器学习课程第十周:解锁梯度下降的神秘力量,带你飞速征服数据山峰!
【8月更文挑战第16天】Andrew Ng 的机器学习课程是学习该领域的经典资源。第十周聚焦于优化梯度下降算法以提升效率。课程涵盖不同类型的梯度下降(批量、随机及小批量)及其应用场景,介绍如何选择合适的批量大小和学习率调整策略。还介绍了动量法、RMSProp 和 Adam 优化器等高级技巧,这些方法能有效加速收敛并改善模型性能。通过实践案例展示如何使用 Python 和 NumPy 实现小批量梯度下降。
44 1
|
4月前
|
机器学习/深度学习 算法 Python
探索机器学习中的梯度下降优化算法
【8月更文挑战第1天】在机器学习的广阔天地里,梯度下降法如同一位勇敢的探险家,指引我们穿越复杂的数学丛林,寻找模型参数的最优解。本文将深入探讨梯度下降法的核心原理,并通过Python代码示例,展示其在解决实际问题中的应用。
93 3
|
6月前
|
机器学习/深度学习 人工智能 算法
【机器学习】深度探索:从基础概念到深度学习关键技术的全面解析——梯度下降、激活函数、正则化与批量归一化
【机器学习】深度探索:从基础概念到深度学习关键技术的全面解析——梯度下降、激活函数、正则化与批量归一化
83 3
|
6月前
|
机器学习/深度学习 存储 人工智能
【机器学习】GBDT (Gradient Boosting Decision Tree) 深入解析
GBDT,全称为Gradient Boosting Decision Tree,即梯度提升决策树,是机器学习领域中一种高效且强大的集成学习方法。它通过迭代地添加决策树以逐步降低预测误差,从而在各种任务中,尤其是回归和分类问题上表现出色。本文将深入浅出地介绍GBDT的基本原理、算法流程、关键参数调整策略以及其在实际应用中的表现与优化技巧。
1439 1
|
7月前
|
机器学习/深度学习 人工智能 算法
【人工智能】<吴恩达-机器学习>批量梯度下降&矩阵和向量运算概述
【1月更文挑战第26天】【人工智能】<吴恩达-机器学习>批量梯度下降&矩阵和向量运算概述
|
7月前
|
机器学习/深度学习 人工智能
【人工智能】<吴恩达-机器学习>单变量的线性回归&认识梯度下降
【1月更文挑战第26天】【人工智能】<吴恩达-机器学习>单变量的线性回归&认识梯度下降