ML之NB、LoR:基于NB和LoR算法对Kaggle IMDB影评数据集(国外类似豆瓣电影)情感分析进行分类

简介: ML之NB、LoR:基于NB和LoR算法对Kaggle IMDB影评数据集(国外类似豆瓣电影)情感分析进行分类

输出结果

数据集:https://blog.csdn.net/qq_41185868/article/details/88408004

image.png

核心代码

#1、读取数据并做一些基本的预处理(比如说把评论部分的html标签去掉等等)

def review_to_wordlist(review):

   '''

   把IMDB的评论转成词序列

   '''

   review_text = BeautifulSoup(review,"lxml").get_text()  # 去掉HTML标签,拿到内容

   review_text = re.sub("[^a-zA-Z]"," ", review_text)   # 用正则表达式取出符合规范的部分

   words = review_text.lower().split()   # 小写化所有的词,并转成词list

   return words   # 返回words

# 使用pandas读入训练和测试csv文件

train = pd.read_csv('F:/File_Python/Resources/Kaggle Film critic emotion/labeledTrainData.tsv', header=0, delimiter="\t", quoting=3)

test = pd.read_csv('F:/File_Python/Resources/Kaggle Film critic emotion/testData.tsv', header=0, delimiter="\t", quoting=3 )

y_train = train['sentiment']  # 取出情感标签,positive/褒 或者 negative/贬

train_data = []               # 将训练和测试数据都转成词list

for i in range(0,len(train['review'])):

   train_data.append(" ".join(review_to_wordlist(train['review'][i])))

test_data = []

for i in range(0,len(test['review'])):

   test_data.append(" ".join(review_to_wordlist(test['review'][i])))

print(train_data)

print(y_train)

#2、特征处理:从数据里面拿到有区分度的特征,采用TF-IDF向量方法

from sklearn.feature_extraction.text import TfidfVectorizer as TFIV

# 初始化TFIV对象,去停用词,加2元语言模型

tfv = TFIV(min_df=3,  max_features=None, strip_accents='unicode', analyzer='word',token_pattern=r'\w{1,}', ngram_range=(1, 2), use_idf=1,smooth_idf=1,sublinear_tf=1, stop_words = 'english')

X_all = train_data + test_data  # 合并训练和测试集以便进行TFIDF向量化操作

len_train = len(train_data)

tfv.fit(X_all)    

X_all = tfv.transform(X_all)

X = X_all[:len_train]   # 恢复成训练集和测试集部分

X_test = X_all[len_train:]

# 3、利用NB算法,多项式朴素贝叶斯

from sklearn.naive_bayes import MultinomialNB as MNB

model_NB = MNB()

model_NB.fit(X, y_train) #特征数据直接灌进来

MNB(alpha=1.0, class_prior=None, fit_prior=True)

from sklearn.cross_validation import cross_val_score

import numpy as np

print ("多项式贝叶斯分类器20折交叉验证得分: ", np.mean(cross_val_score(model_NB, X, y_train, cv=20, scoring='roc_auc')))

#4、利用LoR算法

from sklearn.linear_model import LogisticRegression as LR

from sklearn.grid_search import GridSearchCV

# 设定grid search的参数

grid_values = {'C':[30]}  

# 设定打分为roc_auc

model_LR = GridSearchCV(LR(penalty = 'L2', dual = True, random_state = 0), grid_values, scoring = 'roc_auc', cv = 20)

# 数据灌进来

model_LR.fit(X,y_train)

# 20折交叉验证,开始漫长的等待...

GridSearchCV(cv=20, estimator=LogisticRegression(C=1.0, class_weight=None, dual=True,

            fit_intercept=True, intercept_scaling=1, penalty='L2', random_state=0, tol=0.0001),

       fit_params={}, iid=True, loss_func=None, n_jobs=1,

       param_grid={'C': [30]}, pre_dispatch='2*n_jobs', refit=True,

       score_func=None, scoring='roc_auc', verbose=0)

#输出结果

print (model_LR.grid_scores_)


相关文章
|
27天前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
167 0
|
2月前
|
机器学习/深度学习 Dragonfly 人工智能
基于蜻蜓算法优化支持向量机(DA-SVM)的数据多特征分类预测研究(Matlab代码实现)
基于蜻蜓算法优化支持向量机(DA-SVM)的数据多特征分类预测研究(Matlab代码实现)
|
2月前
|
机器学习/深度学习 传感器 数据采集
【23年新算法】基于鱼鹰算法OOA-Transformer-BiLSTM多特征分类预测附Matlab代码 (多输入单输出)(Matlab代码实现)
【23年新算法】基于鱼鹰算法OOA-Transformer-BiLSTM多特征分类预测附Matlab代码 (多输入单输出)(Matlab代码实现)
185 0
|
3月前
|
机器学习/深度学习 人工智能 算法
AP聚类算法实现三维数据点分类
AP聚类算法实现三维数据点分类
131 0
|
14天前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
124 3
|
19天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
20天前
|
传感器 机器学习/深度学习 算法
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
|
8天前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
8天前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
19天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
134 14

热门文章

最新文章