DL之DeepLabv2:DeepLab v2算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

简介: DL之DeepLabv2:DeepLab v2算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

DeepLab v2算法的简介(论文介绍)


     DeepLabv2是DeepLabv1的改进版本,改进的不多,主要是用多尺度提取获得更好的分割效果。


Abstract

      In this work we address the task of semantic image segmentation with Deep Learning and make three main contributions  that are experimentally shown to have substantial practical merit. First, we highlight convolution with upsampled filters, or  ‘atrous convolution’, as a powerful tool in dense prediction tasks. Atrous convolution allows us to explicitly control the resolution at  which feature responses are computed within Deep Convolutional Neural Networks. It also allows us to effectively enlarge the field of  view of filters to incorporate larger context without increasing the number of parameters or the amount of computation. Second, we  propose atrous spatial pyramid pooling (ASPP) to robustly segment objects at multiple scales. ASPP probes an incoming convolutional  feature layer with filters at multiple sampling rates and effective fields-of-views, thus capturing objects as well as image context at  multiple scales. Third, we improve the localization of object boundaries by combining methods from DCNNs and probabilistic graphical  models. The commonly deployed combination of max-pooling and downsampling in DCNNs achieves invariance but has a toll on  localization accuracy. We overcome this by combining the responses at the final DCNN layer with a fully connected Conditional  Random Field (CRF), which is shown both qualitatively and quantitatively to improve localization performance. Our proposed  “DeepLab” system sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching 79.7% mIOU in  the test set, and advances the results on three other datasets: PASCAL-Context, PASCAL-Person-Part, and Cityscapes. All of our code  is made publicly available online.

      本文研究了基于深度学习的语义图像分割问题,并提出了三个具有实际应用价值的主要研究方向。首先,我们强调卷积与上采样滤波器,或“atrous卷积”,在密集预测任务中是一个强大的工具。Atrous卷积允许我们显式地控制在深度卷积神经网络中计算特征响应的分辨率。它还允许我们有效地扩大过滤器的视野,在不增加参数数量或计算量的情况下合并更大的上下文。其次,提出了一种基于空间金字塔池化 (ASPP)的多尺度鲁棒分割方法。ASPP使用多个采样速率的过滤器和有效的视图字段探测传入的卷积特征层,从而在多个尺度上捕获对象和图像上下文。第三,结合DCNNs方法和概率图形模型,改进了目标边界的定位。DCNNs中常用的最大池和下采样的组合实现了不变性,但对定位精度有一定的影响。我们通过将DCNN最后一层的响应与一个完全连接的条件随机场(CRF)相结合来克服这个问题,该条件随机场在定性和定量上都显示出来,以提高定位性能。我们提出的“DeepLab”系统在PASCAL VOC-2012语义图像分割任务中设置了新的技术状态,在测试集中达到了79.7%的mIOU,并在其他三个数据集:PASCAL-Context, PASCAL-Person-Part,和Cityscapes上提出了结果。我们所有的代码都在网上公开。

CONCLUSION

      Our proposed “DeepLab” system re-purposes networks  trained on image classification to the task of semantic segmentation  by applying the ‘atrous convolution’ with upsampled  filters for dense feature extraction. We further extend it  to atrous spatial pyramid pooling, which encodes objects as  well as image context at multiple scales. To produce semantically  accurate predictions and detailed segmentation maps  along object boundaries, we also combine ideas from deep  convolutional neural networks and fully-connected conditional  random fields. Our experimental results show that  the proposed method significantly advances the state-ofart  in several challenging datasets, including PASCAL VOC  2012 semantic image segmentation benchmark, PASCALContext,  PASCAL-Person-Part, and Cityscapes datasets.

      我们提出的“DeepLab”系统将训练有素的图像分类网络重新用于语义分割任务,利用带上采样滤波器的“atrous convolution”进行密集特征提取。我们进一步将其扩展到空间金字塔池,它在多个尺度上编码对象和图像上下文。为了产生精确的语义预测和沿着目标边界的详细分割地图,我们还结合了深度卷积神经网络和全连通条件随机域的思想。实验结果表明,该方法在PASCAL VOC 2012语义图像分割基准测试、PASCALContext,  PASCAL-Person-Part和Cityscapes数据集等多个具有挑战性的数据集上都取得了显著的进步。


论文

Liang-ChiehChen, George Papandreou, IasonasKokkinos, Kevin Murphy, Alan L. Yuille.

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, AtrousConvolution,

and Fully Connected CRFs.

IEEE Transactions on Pattern Analysis and Machine Intelligence ( Volume: 40 , Issue: 4 , April 1 2018 )应该是2017

https://arxiv.org/abs/1606.00915



0、实验结果


1、基于VGG-16的DeepLabmodel中,ASPP对PASCAL VOC 2012 valset性能(平均IOU)的影响。


Effect of ASPP on PASCAL VOC 2012 valset performance (mean IOU) for VGG-16 based DeepLabmodel.




LargeFOV: single branch, r = 12 .

ASPP-S: four branches, r= { 2, 4, 8, 12 } .

ASPP-L: four branches, r = { 6, 12, 18, 24 } .

多尺度+大感受野可显著提高语义分割效果


2、PASCAL VOC 2012 valresults输入图像和论文中的DeepLabresults之前/之后的CRF


PASCAL VOC 2012 valresults. Input image and our DeepLabresults before/after CRF


image.png


3、ASPP与基线LargeFOV模型进行定性分割


Qualitative segmentation results with ASPP compared to the baseline LargeFOV model.

采用多个大FOV的ASPP-L模型可以成功捕获多个尺度的目标和图像上下文。


image.png


4、PASCAL VOC 2012测试集性能


Performance on PASCAL VOC 2012 test set

在NVidia Titan X GPU 上运行速度达到了8FPS,全连接CRF 平均推断需要0.5s ,在耗时方面和DeepLab-v1无差异,但在PASCAL VOC-2012 达到79.7 mIOU。


image.png



1、DeepLab-v2 改进点


(1)、用多尺度特征提取获得更好的分割效果


目标存在多尺度的问题,DeepLabv1中是用多个MLP结合多尺度特征解决,虽然可以提升系统的性能,但是增加了特征计算量和存储空间。

受到SpatialPyramidPooling(SPP)的启发,提出了一个类似的结构,在给定的输入上以不同采样率的空洞卷积并行采样,相当于以多个尺度捕捉图像的上下文,称为ASPP(atrousspatialpyramidpooling)模块。





DeepLab v2算法的架构详解


更新……





DeepLab v2算法的案例应用


更新……



相关文章
|
17天前
|
机器学习/深度学习 人工智能 搜索推荐
从零构建短视频推荐系统:双塔算法架构解析与代码实现
短视频推荐看似“读心”,实则依赖双塔推荐系统:用户塔与物品塔分别将行为与内容编码为向量,通过相似度匹配实现精准推送。本文解析其架构原理、技术实现与工程挑战,揭秘抖音等平台如何用AI抓住你的注意力。
267 7
从零构建短视频推荐系统:双塔算法架构解析与代码实现
|
5月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
4月前
|
机器学习/深度学习 运维 监控
实时异常检测实战:Flink+PAI 算法模型服务化架构设计
本文深入探讨了基于 Apache Flink 与阿里云 PAI 构建的实时异常检测系统。内容涵盖技术演进、架构设计、核心模块实现及金融、工业等多领域实战案例,解析流处理、模型服务化、状态管理等关键技术,并提供性能优化与高可用方案,助力企业打造高效智能的实时异常检测平台。
346 1
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
240 6
|
9月前
|
负载均衡 算法
架构学习:7种负载均衡算法策略
四层负载均衡包括数据链路层、网络层和应用层负载均衡。数据链路层通过修改MAC地址转发帧;网络层通过改变IP地址实现数据包转发;应用层有多种策略,如轮循、权重轮循、随机、权重随机、一致性哈希、响应速度和最少连接数均衡,确保请求合理分配到服务器,提升性能与稳定性。
1911 11
架构学习:7种负载均衡算法策略
|
8月前
|
存储 监控 算法
公司监控上网软件架构:基于 C++ 链表算法的数据关联机制探讨
在数字化办公时代,公司监控上网软件成为企业管理网络资源和保障信息安全的关键工具。本文深入剖析C++中的链表数据结构及其在该软件中的应用。链表通过节点存储网络访问记录,具备高效插入、删除操作及节省内存的优势,助力企业实时追踪员工上网行为,提升运营效率并降低安全风险。示例代码展示了如何用C++实现链表记录上网行为,并模拟发送至服务器。链表为公司监控上网软件提供了灵活高效的数据管理方式,但实际开发还需考虑安全性、隐私保护等多方面因素。
127 0
公司监控上网软件架构:基于 C++ 链表算法的数据关联机制探讨
|
9月前
|
机器学习/深度学习 算法 PyTorch
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
2583 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
|
14天前
|
Cloud Native Serverless API
微服务架构实战指南:从单体应用到云原生的蜕变之路
🌟蒋星熠Jaxonic,代码为舟的星际旅人。深耕微服务架构,擅以DDD拆分服务、构建高可用通信与治理体系。分享从单体到云原生的实战经验,探索技术演进的无限可能。
微服务架构实战指南:从单体应用到云原生的蜕变之路
|
3月前
|
缓存 Cloud Native Java
Java 面试微服务架构与云原生技术实操内容及核心考点梳理 Java 面试
本内容涵盖Java面试核心技术实操,包括微服务架构(Spring Cloud Alibaba)、响应式编程(WebFlux)、容器化(Docker+K8s)、函数式编程、多级缓存、分库分表、链路追踪(Skywalking)等大厂高频考点,助你系统提升面试能力。
161 0

热门文章

最新文章