系统性能监控工具ssar实例精选 | 龙蜥SIG

简介: 为更快速了解系统性能监控工具(ssar)的用途,本文从案例角度挑选了10大典型使用场景进行介绍。

跟踪诊断技术 SIG 致力于为操作系统生态提供系统性,工具化,并以数据为支撑的发现、跟踪和诊断问题的能力。

SIG目标:为龙蜥社区(OpenAnolis)开源操作系统,提供一个全栈覆盖内核与核心组件的跟踪和诊断工具,增强龙蜥社区(OpenAnolis)全栈的可观察性和可靠性。作者

广成(闻茂泉)、无牙(李靖轩)分别是龙蜥社区跟踪诊断技术 SIG 核心成员。


欢迎更多开发者加入跟踪诊断技术SIG:

网址:https://openanolis.cn/sig/tracing

邮件列表:cloud-kernel@lists.openanolis.cn跟踪诊断SIG.png

前言

ssar 是阿里自研并贡献至龙蜥社区的一款系统性能监控工具。该工具系统开销很小,已经在公司部分业务规模化部署,且持续稳定运行 1 年以上。


ssar 工具近期在国内领先的操作系统开源社区及创新平台龙蜥社区开源,欢迎大家访问龙蜥社区(https://openanolis.cn/sig/tracing)下载 ssar 工具源码适用。源码中提供了相关的编译和安装步骤,还提供了具体《使用参考手册》。


ssar 工具在日常使用中也解决了很多实际的生产问题,为了能让大家更快速的了解 ssar 的用途,这里特别从案例使用的角度挑选了工具的十大典型使用场景进行介绍。

一、定位 CPU 和内存波动时的进程级因素

日常运维中,整机 CPU 和内存经常出现较大的增长,从而引起系统不稳定。此时特别需要能回朔历史数据,查看指标波动时刻的进程级 CPU 和内存等影响因素。

ssar 查看整机 CPU 和内存变化趋势方法。其中 user、system 和 anonpages 分别是内核用于指代用户空间 CPU 使用、内核空间 CPU 使用和匿名页内存的指标名。

$ ssar -i 1 -o user,system,anonpages
collect_datetime       user/s   system/s  anonpages
2021-09-08T18:36:00    787.38     145.30    6590885 
2021-09-08T18:37:00    299.93     230.25   12808418 
2021-09-08T18:38:00    116.58      79.43   14119096 
2021-09-08T18:39:00    401.88     101.75   10580258 
2021-09-08T18:40:00    332.68     279.62    8759586

ssar 查看进程级 CPU 影响因素的方法。通过 procs 子命令可以显示出 2021-09-08T18:38:00 到 2021-09-08T18:40:00 这 2 分钟内,内核态 CPU 使用最多的 3 个进程列表。pucpu、pscpu 和 pcpu 分别表示该进程的用户空间 CPU 利用率,内核空间 CPU 利用率和总 CPU 利用率。

$ ssar procs -f 2021-09-08T18:40:00 -r 2 -o pid,ppid,pcpu,pucpu,pscpu,cmd -k pscpu -l 3
    pid    ppid    pcpu   pucpu   pscpu cmd             
   1537    1536    95.3    65.0    30.3 java
  29349       1     0.3     0.1     0.2 sresar 
     11       2     0.1     0.0     0.1 migration/0

ssar 查看进程级内存影响因素的方法。通过 procs 子命令可以显示出 2021-09-08T18:36:00 到 2021-09-08T18:38:00 这 2 分钟内,内存申请增量最多的 3 个进程列表。rss_dlt 表示 rss 内存的增量值。

$ ssar procs -f 2021-09-08T18:38:00 -r 2 -o pid,ppid,rss,rss_dlt,nlwp,cmd -k rss_dlt -l 3
  pid     ppid        rss    rss_dlt nlwp cmd              
197779       1      14624       9472    1 syslog-ng       
185017       1     136328       5400    1 systemd-journal 
27495    77722        360        360    1 sleep

二、跟踪单进程的CPU和内存波动详情

通过上面的方法,发掘出了影响整机指标波动的进程,还可以进一步通过 proc 子命令更进一步追踪特定进程的 CPU 和内存变化情况。其中左尖括号(<)表示 2021-08-09T11:39:00 时刻该 sresar 进程还没有启动,右尖括号(>)表示 2021-08-09T11:47:00 时刻该 sresar 进程已经结束。

$ ssar proc -p $(pidof sresar)  -i1 -o collect_datetime,rss,min_flt,cmd
collect_datetime          rss     min_flt cmd     start_datetime         
2021-08-09T11:39:00          <          < <       < 
2021-08-09T11:40:00       1524        631 sresar  2021-08-09T11:39:18
2021-08-09T11:41:00       1708       1231 sresar  2021-08-09T11:39:18
2021-08-09T11:42:00       3552       1748 sresar  2021-08-09T11:39:18
2021-08-09T11:43:00       3552       1748 sresar  2021-08-09T11:39:18
2021-08-09T11:44:00       3552       1749 sresar  2021-08-09T11:39:18
2021-08-09T11:45:00       3552       1749 sresar  2021-08-09T11:39:18
2021-08-09T11:46:00       3552       1749 sresar  2021-08-09T11:39:18
2021-08-09T11:47:00          >          > >       >
$ ssar proc -p $(pidof sresar) -i 1 --mem
$ ssar proc -p $(pidof sresar) -i 1 --cpu

三、记录5秒级精度的系统load信息

ssar 的 load5s 子命令不仅将 load 的精度提高到了 5s,还创造性增加了load5s 指标,load5s 指标比 load1、load5 和 load15 指标更加精准,更能反映系统当时的压力情况。这里明显可以看出传统的 load1 指标在系统负载压力消失后,还一定的滞后性,但load5s指标却可以精准的显示机器的负载压力。

$ ssar load5s
collect_datetime       threads    load1   runq  load5s
2021-08-09T14:17:35       1047     0.28      2      1
2021-08-09T14:17:40       1058     0.25      1      0
2021-08-09T14:17:47       3047   113.46   1453   1414
2021-08-09T14:17:53       3053   264.62   2002   2001
2021-08-09T14:17:59       3053   403.74   2002   2002
2021-08-09T14:18:05       1049   371.41      1      0
2021-08-09T14:18:10       1055   341.67      1      0
2021-08-09T14:18:15       1048   314.31      1      0
$ ssar load5s -f 2021-07-15T19:00:00 -r 300 -z

四、记录线程D状态异常的stack详情

对于 load5s 值大于 CPU 核数一定倍数的情况,会触发 load 详情的采集,其中针对 D 状态线程会抽样记录内核调用栈。使用 load2p 可以显示详细的 D 状态调用栈信息。

$ ssar load2p -c 2021-09-08T17:25:00 --stackinfo
# 通过调用栈信息,再结合一定的内核代码知识,即可以判断出当时系统问题。
page_fault
  do_page_fault
    __do_page_fault
      handle_mm_fault
        __do_fault
          filemap_fault
            __lock_page_or_retry
              wait_on_page_bit_killable
                sleep_on_page_killable

五、诊断整机高阶内存不足情况

系统内存不足相关的问题,一直是日常运维中最常见的问题之一。有时候我们会从系统日志中看到类似这样的日志信息“page allocction failure: order:4”,这是 free 内存不足,并且伴随内存碎片化,内核空间申请不到高阶内存的表现。        


定位这类问题需先对整机内存不足程度做一个诊断,anonpages 指标是匿名页,memfree 指标是整机 free 内存, pgsteal_kswapd 指标是每秒异步内存回收数量,pgsteal_direct 是每秒直接内存回收数量。

$ ssar -i 1 -o anonpages,memfree,pgsteal_kswapd,pgsteal_direct
collect_datetime     anonpages    memfree pgsteal_kswapd/s pgsteal_direct/s 
2021-09-09T10:40:00   11151058    1716004             0.00             0.00 
2021-09-09T10:41:00   12008117    1615129             0.00             0.00 
2021-09-09T10:42:00   13993906    1404292             0.00             0.00 
2021-09-09T10:43:00   15869526    1233360             0.00             0.00 
2021-09-09T10:44:00   17135683    1083402         43821.88             0.00 
2021-09-09T10:45:00   19488155     829303         45080.95             0.00 
2021-09-09T10:46:00   20787968     712429         10452.02           455.90 
2021-09-09T10:47:00   21725142     614698             0.00          2313.68

可以看到,随着系统的 anonpages 匿名页内存的增长,memfree 空闲内存逐步减少,到达一定阈值后,开始异步内存回收 pgsteal_kswapd,空闲内存进一步减少进一步引起直接内存回收 pgsteal_direct。

在这样空闲内存严重不足的前提下,可能会进一步引发内核高阶内存不足的情况发生。从数据中可以看到 2021-09-09T10:46:00 时刻的 order4 内存库存为0。

$ ssar -i 1 --node0
collect_datetime        order0     order1     order2     order3     order4     order5
2021-09-09T10:40:00     139116     429294     226754      51287      37276      44181
2021-09-09T10:41:00      20070      89672      37399      51721      37277      44181
2021-09-09T10:42:00      31154      71323      36612      49952      37277      44181
2021-09-09T10:43:00      73309      93733      36843      49249      36256      44157
2021-09-09T10:44:00      76885      73331      36409      48408      35477      42181
2021-09-09T10:45:00      46915     140381      40744      47815      34313      44171
2021-09-09T10:46:00      28346      16054       6420        141          0          0
2021-09-09T10:47:00      34694      29549      16750       3042       1481        319

六、定位 Cgroup 级别的内存颠簸问题

在 cgroup 层面出现内存不足时,也有一个内存颠簸问题,会引起系统严重的问题。

$ tsar2 --io -i 1 -I nvme0n1p1 -s rs,rarqsz,util
Time           nvme0n1p1 nvme0n1p1 nvme0n1p1
Time                  rs    rarqsz      util
09/09/21-14:50     66.1K     10.25    100.00
09/09/21-14:51     71.1K     13.25    100.00
09/09/21-14:52     63.8k     10.00    100.00
09/09/21-14:53     57.0k     14.50    100.00
09/09/21-14:54     64.0k     14.00    100.00

性能优越的 nvme 磁盘,有时候磁盘 util 也会被打满到 100%,可以观察到相应的磁盘读 IO 高达数万,同时单次读 IO 大小只有 10 多个 Kb 大小。造成这种情况的最常见原因之一是 cgroup 级别的内存颠簸。通过内核指标 pgmajfault 可以看到在 IO 打满的同时每秒整机主缺页中断数也非常高,这正是造成系统 IO 打满的直接原因。

$ ssar -i 1 -o pgmajfault
collect_datetime    pgmajfault/s
2021-09-09T14:50:00     43491.31 
2021-09-09T14:51:00     44432.01 
2021-09-09T14:52:00     45464.78 
2021-09-09T14:53:00     43991.22 
2021-09-09T14:54:00     45922.34
$ ssar procs -f 2021-09-09T14:51:00 -r 1 -o pid,rss,maj_flt,maj_dlt,cmd -k maj_dlt -l 5
    pid        rss    maj_flt    maj_dlt cmd             
  58532    8240736  126575484    1305199 java 
  46873    8237292  173405708    1257924 java 
  51357     577796      13201         63 python 
 253136     566352      11687         46 syslog-ng
  46025    1229520        478         42 bash

进一步,通过 ssar 的 procs 子命令,可以定位到发生大量主缺页中断的正是 pid 为 58532 和 46873 这 2 个 java 进程。引起 java 进程大量发生主缺页中断的原因是进程 rss 内存极度逼近 cgroup 组设置的memory.limit_in_bytes 值,导致 cgroup 组内留给 clean 状态的代码段内存空间不足以完全加载所有程序代码段。所以代码段在程序执行中,只能不断的被丢弃再从磁盘读取。

七、网络 TCP 重传扩展信息

在主机网络层面,日常运维中也会受到网络丢包、重传和乱序等问题的困扰。这里也提供了几组更加深入的网络指标供诊断网络问题使用。

$ tsar2 --retran
Time           --retran--- --retran--- --retran-- --retran-- -retran- ----retran----
Time           RetransSegs FastRetrans LossProbes RTORetrans RTORatio LostRetransmit
08/09/21-16:45       49.44       34.41      16.02       6.41    12.97           0.26
08/09/21-16:50       44.07       29.03      16.84       8.21    18.63           0.13
08/09/21-16:55       37.58       18.72      10.91      11.44    30.44           0.02
$ tsar2 --tcpofo
Time           -tcpofo-- ---tcpofo--- ---tcpofo--- -tcpofo- tcpofo- -tcpofo-
Time           OfoPruned DSACKOfoSent DSACKOfoRecv OFOQueue OFODrop OFOMerge
08/09/21-16:45      0.00         0.00         0.00   251.86    0.00     0.00
08/09/21-16:50      0.00         0.00         0.00   182.35    0.00     0.00
08/09/21-16:55      0.00         0.00         0.00   115.70    0.00     0.00

在 tcp 重传方面,我们提供了许多相比 tcp 重传率之外,更为细致的指标。现代 Linux 系统,早已经有除 200ms 超时重传之外的多种重传的方式来加速网络抖动或者异常状态下的恢复。这里我们将 TCP 的重传进行了更细致的分类,包括快重传、尾包重传和超时重传,不同的重传对于业务的影响是完全不同的,相当多的时候,我们可能观察到快重传或者尾包重传很高,但超时重传并不多,这个时候往往并不影响业务。而一旦出现大量的超时重传,往往意味着真正的网络异常。


--tcpofo 可以让我们看到当前收到的一些乱序的情况,乱序跟重传往往是关联的,一般情况下,收到乱序报文会看到 OFOQueue 增加,而一旦看到 OFODrop,则说明收到的乱序的报文被丢失了,这个时候很可能是我们队列中乱序报文太多,或者我们应用进程没有及时将 tcp 接收队列中的数据包收走。


以上数据再结合 ssar 的历史数据,找到某些重传或乱序的异常点,可以帮我们很快定位一些 tcp 问题的原因。

$ tsar2 --tcpdrop
Time           ----tcpdrop----- --tcpdrop-- ----tcpdrop---- ----tcpdrop---- --tcpdrop--
Time           LockDroppedIcmps ListenDrops ListenOverflows PrequeueDropped BacklogDrop
08/09/21-16:45             0.00        0.28            0.28            0.00        0.00
08/09/21-16:50             0.00        1.97            1.97            0.00        0.00
08/09/21-16:55             0.00       21.96           21.96            0.00        0.00
$ tsar2 --tcperr
Time           ---tcperr--- ---tcperr--- ---tcperr--- ---tcperr---- --tcperr---
Time           RenoFailures SackFailures LossFailures AbortOnMemory AbortFailed
08/09/21-16:45         0.00         0.00         0.00          0.00        0.00
08/09/21-16:50         0.00         0.00         0.00          0.00        0.00
08/09/21-16:55         0.00         0.00         0.00          0.00        0.00

对于 TCP 的一些典型丢包和异常,可以通过 --tcpdrop/--tcperr 来观察,譬如上面我们看到在 08/09/21-16:55 时,有较多的 ListenDrops 和 ListenOverflows,说明有较多的 TCP SYN 建连请求,导致 TCP 的 accept 队列满了,这种情况说明到达服务端的新建连接请求比服务端 accept() 消费新的连接请求的速度要快,有可能是突发来了较多的建连请求,也可能是服务端长时间没有调用 accept() 来消费 accept 队列中的半连接请求。

八、自定义采集任意系统指标

做驱动开发的同学很可能希望能记录自己的驱动模块中一些性能数据,ssar 工具为这种场景提供了简单和完善的采集方案。只需要驱动开发同学,将内核模块中的性能指标通过/proc/或/sys/下的伪文件方式暴露为用户空间即可。数据可以是累积值,也可以是瞬时值,例如 mydev 伪文件中有 2 个值,左侧的indicator1 是累积值,右侧的 indicator2 是瞬时值。

$ cat /proc/mydev
104377580      7252

ssar 工具配置采集的方法比较简单。

$ cat /etc/ssar/sys.conf 
[file]
default=[
    {src_path='/proc/mydev', turn=true, cfile='mydev'},
]
$ sudo systemctl restart sresar               # 重启采集进程配置文件生效

修改完配置完后,可以使用如下命令获取历史数据。

$ ssar -i 1 -f 2021-09-09T17:20:00 -r 60 -o 'metric=d:cfile=mydev:line=1:column=1:alias=indicator1;metric=c:cfile=mydev:line=1:column=2:alias=indicator2'
collect_datetime     indicator1/s  indicator2
2021-09-09T17:30:00        884.40        7192
2021-09-09T17:31:00        652.15        7078
2021-09-09T17:32:00        799.73        7676
2021-09-09T17:33:00        708.37        7953
2021-09-09T17:34:00        596.47        7738

命令略微改变下,获取实时数据。

$ ssar -i 1s -f +10 -o 'metric=d|cfile=mydev|line=1|column=1|alias=indicator1;metric=c|cfile=mydev|line=1|column=2|alias=indicator2'
collect_datetime     indicator1/s  indicator2
2021-09-09T17:40:00        668.50        7004
2021-09-09T17:40:01        480.38        6115
2021-09-09T17:40:02        651.55        6496
2021-09-09T17:40:03        789.15        6433
2021-09-09T17:40:04        867.93        7508

不安装ssar软件包,只拷贝 ssar 程序,也可以直接使用获取实时数据。

$ ./ssar -i 1s -f +10 -o 
'metric=d|src_path=/proc/mydev|line=1|column=1|alias=indicator1;metric=c|src_path=/proc/mydev|line=1|column=2|alias=indicator2'

对于多行或者多列指标含义相近的情况,也可以参考如下 2 个用法。

$ ssar -o 'metric=d:cfile=stat:line=2:column=2-
11:alias=cpu0_{column};' # cpu0第2到11列数据 
$ ssar -o 'metric=d|cfile=stat|line=2-
17|column=5|alias=idle_{line};'   # cpu0到15的idle

ssar 还支持指标不是整数的情况,支持实数和字符串形式的指标,参考如下用法。

$ ssar -o 'metric=c:cfile=loadavg:line=1:column=1:dtype=float:alias=load1'
# load1实型数据
$ ssar -o 'metric=c|cfile=loadavg|line=1|column=4|dtype=string|alias=rp'
# rp字符串信息

如果只想采集这个驱动指标文件mydev,ssar还提供了2个配置参数load5s_flag 和 proc_flag 来关闭load和进程级指标采集。节省不必要的磁盘存储空间开销。

九、诊断特定CPU中断不均情况

特定 CPU 的 softirq 资源消耗过多,会影响此 CPU 上用于用户空间的资源使用。因此当中断分布不均时,会严重影响用户空间进程的执行。首先需要了解 softirq 资源消耗在各个 CPU 之间是否均衡。

$ tsar2 --cpu -I cpu,cpu0,cpu1,cpu2,cpu3,cpu4,cpu5,cpu6,cpu7 -s sirq -i 1
Time           --cpu-- -cpu0-- -cpu1-- -cpu2-- -cpu3-- -cpu4-- -cpu5-- -cpu6-- -cpu7--
Time              sirq    sirq    sirq    sirq    sirq    sirq    sirq    sirq    sirq
09/09/21-21:15    1.44    0.01    0.01    0.01    2.28    0.02   15.69    2.72    5.57
09/09/21-21:16    1.98    0.01    0.01    0.01    2.56    0.03   18.40    2.56    8.93
09/09/21-21:17    2.61    0.01    0.01    0.01    2.31    0.09   17.28    2.21    3.59
09/09/21-21:18    1.84    0.01    0.01    0.01    1.97    0.03   12.16    2.04    8.75
09/09/21-21:19    1.32    0.01    0.01    0.01    1.66    0.03   16.52    1.69    6.77

通过命令可以看到,softirq 在各个 CPU 之间分布并不均匀,cpu5 的 softirq高达百分之十几之多。针对更多核 CPU 的情况,可以使用 tsar2 cputop 子命令排序输出 softirq 占用比最高的 CPU。


tsar2 irqtop 即可快速定位引起 cpu5 的 softirq 资源占比高的原因是中断名称为 virtio-output.1 的 158 号中断,并且显示出每秒平均中断数。

$ tsar2 irqtop -i 1 -C 5   
Time           --N1--- N1- N1- --------N1-------- --N2--- N2- N2- --------N2------
Time             count irq CPU name                 count irq CPU name             
09/09/21-22:58  981.80 158 5   virtio-output.1     304.02 154 5   nvme0q0, nvme0q1
09/09/21-22:59  765.32 158 5   virtio-output.1     234.97 154 5   nvme0q0, nvme0q1
09/09/21-23:00  763.63 154 5   nvme0q0, nvme0q1    393.88 158 5   virtio-output.1
09/09/21-23:01  531.87 158 5   virtio-output.1     225.03 154 5   nvme0q0, nvme0q1
09/09/21-23:02  557.23 158 5   virtio-output.1     150.25 154 5   nvme0q0, nvme0q1

默认情况下 CPU 级别的中断情况不开启历史采集,需要将配置文件中 interrupts 部分修改为如下配置开启。

{src_path='interrupts', turn=true, gzip=true},

如果需要获取实时数据,可将上面命令增加-l选项即可。

$ tsar2 --cpu -I cpu,cpu0,cpu1,cpu2,cpu3,cpu4,cpu5,cpu6,cpu7 -s sirq -i 1 -l
$ tsar2 irqtop -i 1 -C 5 -l

十、支持灵活的数据输出和解析

ssar 不仅数据指标非常丰富,而且输出格式上也非常易于使用和解析。ssar 的所有数据输出,都支持支持 json 格式输出,便于 python 等高级语言的解析。使用方法就是在命令上增加一个 --api 选项。

$ ssar -r 5 -o user,system,memfree,anonpages --api
[{"anonpages":"280824","collect_datetime":"2021-09-10T12:00:00","memfree":"181753024","system":"-","user":"-"},{"anonpages":"280812","collect_datetime":"2021-09-10T12:05:00","memfree":"181752704","system":"2.35","user":"1.22"}]

对于 shell 等脚本解析,ssar 也提供了便利,-H 选项可以隐藏掉各种 header 信息。

$ ssar -r 5 -o user,system,memfree,anonpages -H
2021-09-10T12:00:00          -          -  81754836     280296 
2021-09-10T12:05:00       1.29       2.57  81756712     280228

对于数据项中出现的各种“-”、“*”和“<”等符号信息,提供-P 选项参数隐藏输出,可以让上层调用脚本减少处理异常数据的工作。

$ ssar -r 5 -o user,system,memfree,anonpages -H -P
2021-09-10T12:10:00       1.31       2.58  81747740     281676

ssar 工具代码库地址:https://codeup.openanolis.cn/codeup/tracing_diagnosis/ssar.git


—— 完 ——


关于龙蜥社区SIG

SIG是开放的,并争取让交付成果成为社区发行的一部分,由组内核心成员主导治理,可通过邮件列表和组内的成员进行交流。龙蜥社区SIG目前已超20个,包括跟踪诊断技术SIG、商密软件栈、高性能存储技术SIG、Java语言与虚拟机SIG、Cloud Kernel、OceanBase SIG等。

sig截图.png

SIG网址:https://openanolis.cn/sig


加入龙蜥社群

加入微信群:添加社区助理-龙蜥社区小龙(微信:openanolis_assis),备注【龙蜥】拉你入群;加入钉钉群:扫描下方钉钉群二维码。欢迎开发者/用户加入龙蜥社区(OpenAnolis)交流,共同推进龙蜥社区的发展,一起打造一个活跃的、健康的开源操作系统生态!

image.png

相关实践学习
CentOS 7迁移Anolis OS 7
龙蜥操作系统Anolis OS的体验。Anolis OS 7生态上和依赖管理上保持跟CentOS 7.x兼容,一键式迁移脚本centos2anolis.py。本文为您介绍如何通过AOMS迁移工具实现CentOS 7.x到Anolis OS 7的迁移。
相关文章
|
5月前
|
运维 Prometheus 监控
在Linux中,如何进行系统性能监控?
在Linux中,如何进行系统性能监控?
|
5月前
|
监控 Java 开发者
揭秘Struts 2性能监控:选对工具与方法,让你的应用跑得更快,赢在起跑线上!
【8月更文挑战第31天】在企业级应用开发中,性能监控对系统的稳定运行至关重要。针对流行的Java EE框架Struts 2,本文探讨了性能监控的工具与方法,包括商用的JProfiler、免费的VisualVM以及Struts 2自带的性能监控插件。通过示例代码展示了如何在实际项目中实施这些监控手段,帮助开发者发现和解决性能瓶颈,确保应用在高并发、高负载环境下稳定运行。选择合适的监控工具需综合考虑项目需求、成本、易用性和可扩展性等因素。
50 0
|
5月前
|
Java 开发者 前端开发
Struts 2、Spring MVC、Play Framework 上演巅峰之战,Web 开发的未来何去何从?
【8月更文挑战第31天】在Web应用开发中,Struts 2框架因强大功能和灵活配置备受青睐,但开发者常遇配置错误、类型转换失败、标签属性设置不当及异常处理等问题。本文通过实例解析常见难题与解决方案,如配置文件中遗漏`result`元素致页面跳转失败、日期格式不匹配需自定义转换器、`&lt;s:checkbox&gt;`标签缺少`label`属性致显示不全及Action中未捕获异常影响用户体验等,助您有效应对挑战。
101 0
|
5月前
|
SQL 监控 关系型数据库
SQL性能监控与调优工具的神奇之处:如何用最佳实践选择最适合你的那一个,让你的数据库飞起来?
【8月更文挑战第31天】在现代软件开发中,数据库性能监控与调优对应用稳定性至关重要。本文对比了数据库内置工具、第三方工具及云服务工具等几种常用SQL性能监控与调优工具,并通过示例代码展示了如何利用MySQL的EXPLAIN功能分析查询性能。选择最适合的工具需综合考虑功能需求、数据库类型及成本预算等因素。遵循了解工具功能、试用工具及定期维护工具等最佳实践,可帮助开发者更高效地管理和优化数据库性能,迎接未来软件开发中的挑战与机遇。
66 0
|
6月前
|
运维 监控 Java
(十)JVM成神路之线上故障排查、性能监控工具分析及各线上问题排错实战
经过前述九章的JVM知识学习后,咱们对于JVM的整体知识体系已经有了全面的认知。但前面的章节中,更多的是停留在理论上进行阐述,而本章节中则更多的会分析JVM的实战操作。
142 1
|
5月前
|
存储 监控 Ubuntu
完全交互式!易于使用的 Linux 性能监控工具
完全交互式!易于使用的 Linux 性能监控工具
|
5月前
|
Prometheus 监控 Cloud Native
简单搭建基本Prometheus监控系统
简单搭建基本Prometheus监控系统
|
5月前
|
存储 数据采集 Prometheus
Prometheus 监控系统常见技术问题大曝光!解决之道让你意想不到!
【8月更文挑战第5天】Prometheus是一款强大的监控工具,但在应用中常遇技术难题。案例一中,因配置错误导致CPU使用率数据不准,调整`metrics_path`可解决。案例二涉及告警规则不触发,修正表达式即可。案例三关于数据存储溢出,设置保留策略如`30d`能缓解。案例四是监控指标丢失,增强网络稳定性和添加重试机制有助于恢复。面对这些问题,细致排查与合理配置是关键。
416 0
|
6月前
|
Prometheus 监控 数据可视化
性能测试:主流性能监控工具介绍
Linux系统中,`vmstat`和`top`提供基本监控;Nmon是实时性能分析工具,轻量且功能丰富;Collectd+InfluxDB+Grafana组合用于系统数据收集、存储和可视化;Prometheus+Grafana则提供灵活的监控和定制化仪表板。这些工具帮助企业监控系统性能,及时发现和解决问题。
|
8月前
|
SQL 运维 监控
关系型数据库性能监控工具
【5月更文挑战第21天】
147 2

热门文章

最新文章