作者 | 阿里巴巴达摩院
2019年12月8日,神经网络和深度学习领域的顶会NeurIPS 在加拿大温哥华召开,阿里巴巴计算平台PAI团队和达摩院智能计算实验室开发的Aligraph在Expo Day 现场进行展示。
为什么专注于GNN
在大数据的背景下,利用高速计算机去发现数据中的规律似乎是最有效的手段。为了让机器计算的有目的性,需要将人的知识作为输入。我们先后经历了专家系统、经典机器学习、深度学习三个阶段,输入的知识由具体到抽象,由规则到特征再到模式,越来越宏观。相对来说,抽象的层次变高了,覆盖面变广了,但我们对底层的感知变弱了,模型的可解释程度变差了。深度学习的应用已经让我们看到了非常可观的价值,但其背后的可解释性工作进展缓慢,也因为如此,当我们用深度学习去解决涉及人身财产安全、法律等敏感问题时,只有数字效果不足以支撑这项技术的应用,我们更需要知道结果后面的原因。
Graph是知识的载体,其间的实体联系蕴含了很强的因果关系。重要的是,这是一种直观的、人们能够读懂的结构。把Graph作为知识支撑,利用深度学习的泛化技术,看上去是一个可行的方向,在某些问题上,离我们的可解释性目标更近了一步。各种深度学习相关的顶会在近年来的paper分布上,图神经网络(GNN)一直处于蓬勃态势。GNN提供了一种解决问题的思路,覆盖范围很广,很多搜索推荐类算法,都可以纳入到GNN范式,因此无论从未来技术储备,还是当下应用扩展的角度,GNN都是一个非常值得投入的方向。
AliGraph定位
相比CNN、RNN等成熟技术而言,GNN还处于探索阶段,Graph之于GNN,不如图像之于CNN、自然语言之于RNN那样理所当然。即便有Graph数据,如何使用GNN没有可遵循的固定模式,更没有沉淀下来的类似卷积一样的算子可直接调用。GNN的有效性需要更多的场景去验证,而每一个场景都需要开发者的深入理解,开发者有能力处理Graph数据和编写之上的深度学习模型。有了百花齐放的应用场景做铺垫,才有可能抽象出共性的GNN算子和算法,再将这些相对成熟的能力赋给使用者,GNN才会真正的推广开来。出于这些考虑,比起开发一个成熟算法供用户使用,平台当前阶段会更侧重提供API给开发者,让开发者有能力贴近自己的场景去实现GNN。
另一方面,工业场景中的Graph数据十分复杂,而且数据量巨大。平台不能脱离场景而独立存在,必须以业务为驱动,才最可能孵化出有实际价值的产品。以阿里巴巴的电商推荐场景为例,每天的产生的图数据多达几百TB,而且高度异构(多种类型的顶点、多种类型的边),顶点和边具有丰富的属性,诸如商品的名称、类目、价格区间,甚至是其关联的图像、视频等,这些属性以明文存在而非已经向量化好的结构化信息。以这样的数据为输入,如何高效的进行GNN训练是一个非常有挑战的问题。如果使用数据预处理、预训练等手段把Graph数据结构化、向量化,会耗费大量的计算资源、存储资源和人力成本。真正对GNN开发者友好的平台,应该是端到端的,在一套IDE里,用户既可以操作复杂的Graph数据,又可以将数据与深度神经网络对接,自由编写上层模型。平台提供简单灵活的接口,满足GNN高速发展所需的可扩展性与生态的兼容性,和针对复杂的分布式环境的大规模与稳定性。
技术栈
层次化架构
AliGraph涵盖了从原始图数据到GNN应用的整体链路,把GNN算法的探索成本降低到和传统深度学习算法同等水平。平台可以分层来看:数据层,引擎层,应用层。
数据层,支持大规模同构图、异构图、属性图。数据无需提前build好,平台提供API来简化数据解析和建图的过程。数据层接口易扩展,方便对接不同格式、不同介质的Graph数据。
引擎层,包含Graph Engine和Tensor Engine。Graph Engine又可分为逻辑对象层与算子层。逻辑对象层,描述的是把原始数据加载到系统后展现给用户的形态是什么。每一个对象实体都会提供相关的语义接口,比如对于一个Graph对象而言,可以获取图的拓扑信息、异构程度、点边数量等。对于用户而言,实际使用中只需要声明一个逻辑对象并指定其数据源即可。
算子层,在逻辑对象之上可以进行的计算操作。比如对于Graph对象而言,支持各种Sampler算子,用于对上层GNN算法提供输入。算子层具有很强的扩展性,以满足场景多样化对算子种类的需求。目前,内置支持的算子围绕GNN算法及生态展开,包括图查询、图采样、负采样、KNN等。
Tensor Engine指深度学习引擎,如TensorFlow、PyTorch,或者其他支持Python接口的Library。GraphEngine的输出为格式对齐的NumPy对象,可无缝与深度学习引擎对接。GNN开发者可自由编写Graph之上的NN逻辑,并可与业务需求相结合,组成一个深度网络模型进行端到端训练。
应用层,强调与业务端到端结合,而非把Graph Embedding的结果割裂开使用。经场景打磨的成熟算法,也会沉淀到应用层,以算法组件的形式提供给用户。
一体化实现
由GCN框架引申,典型的GNN编程范式可概括如下,系统是为了高效支持该范式而设计。
其中,向量化和聚合操作可以利用深度学习引擎的表达能力,因此,为实现上述计算模式,主要在于图相关的操作以及这些操作如何与深度学习引擎对接。我们将技术栈细化成如下图所示,其中Storage、Sampler、Operator是系统要解决的主要问题。信息自底向上在层与层之间前向传播,梯度则自顶向下更新每一层的参数,整个GNN应用在一张深度网络里描述。Storage层的Graph对象是逻辑存储,在其之下有一层抽象的文件接口,可适配多种数据源,这是系统具备可迁移性的前提。Sampler提供丰富的算子,且可独立扩展,不依赖系统框架,满足多样化的需求。Operator进行图语义操作的封装,把性能优化、数据对接隐藏在简洁的接口之下。
高效图引擎
再具体的,图引擎是连接图数据与深度学习框架的桥梁,保证数据传递的高效与稳定。这里的图操作是面向GNN的,和一般意义的图计算有很大区别。Graph Engine是一个分布式服务,具有高性能和高可用的特点,支持百亿级边的异构图在2分钟以内完成构建、十毫秒级按batch多跳跨机采样,支持从失败中状态无损的failover。Graph Engine内部深度优化了RPC过程,实现了数据零拷贝,并且Server间的连接是线程级的,在最大化带宽利用率的同时,每个线程可独立无锁的处理请求。这也是系统性能优异的主要原因。此外,我们通过有效的Cache、去中心化等手段来加速采样和负采样,性能具有明显提升。
算子可扩展
为支持GNN的快速发展需求,系统允许算子自由扩展。系统框架包括用户接口、分布式运行时、分布式存储,3大部分。通过用户接口调用某个算子,算子读取数据并完成分布式计算。我们把分布式运行时和存储的接口进行提炼,将编程接口控制在安全范围内,用户可以基于这些接口开发一个自定义的算子。自定义算子可以统一注册到用户接口上,无需新增用户API。具体的,每种Operator都是一个分布式算子,计算所需的数据会分布在Service的各个Server上,我们抽象了Map()和Reduce()语义,Map()用于把计算请求拆分并转发到对应的Server上,保证数据和计算colocate从而避免数据搬迁的代价,Reduce()则把每个Server的结果进行整合。Operator还需实现Process(),用于本地计算,数据序列化、分布式通信等则无需关心。
取得成果
系统
数据种类:支持同构图、异构图、属性图,有向图、无向图,可方便与任意分布式文件系统对接。
数据规模:支持千亿级边、十亿级顶点的超大规模图(原始存储TB级)。
算子种类:支持几十种可与深度学习相结合的图查询、采样算子,支持向量检索,支持算子按需自定义。
性能指标:支持分钟级超大规模图构建,毫秒级多跳异构图采样,毫秒级大规模向量检索。
用户接口:纯Python接口,与TensorFlow构成一体化IDE,开发成本相比一般TF模型无异。
算法
已支持业界主流的GraphEmbedding算法,包括:DeepWalk、Node2Vec、GraphSAGE、GATNE等。多种自研算法正在计划公开,已发表的相关paper参考如下。
- Representation Learning for Attributed Multiplex Heterogeneous Network.KDD, 2019.
- Is a Single Vector Enough? Exploring Node Polysemy for Network Embedding.KDD, 2019.
- Towards Knowledge-Based Personalized Product Description Generation inE-commerce. KDD, 2019.
- Sequential Scenario-Specific Meta Learner for Online Recommendation. KDD,2019.
- AliGraph: A Comprehensive Graph Neural Network Platform. VLDB, 2019.
- Large Scale Evolving Graphs with Burst Detection. IJCAI, 2019.
- Hierarchical Representation Learning for Bipartite Graphs. IJCAI, 2019.
- Cognitive Graph for Multi-Hop Reading Comprehension at Scale. ACL, 2019.
- Bayes EMbedding (BEM): Refining Representation by Integrating KnowledgeGraphs and Behavior-specific Networks. CIKM 2019.
- Towards Knowledge-Based Recommender Dialog System. EMNLP, 2019.
- Learning Disentangled Representations for Recommendation. NeurIPS, 2019.
业务
在阿里巴巴集团内,已覆盖淘宝推荐、淘宝搜索、新零售、网络安全(反恐、垃圾或异常检测、反作弊)、线上支付、优酷、阿里健康等相关业务。典型场景效果如下:
手机淘宝首页猜你喜欢,云主题推荐(每天5500w PV)
相比其他系统实现的GE模型,在百亿级边、十亿级顶点规模的用户-商品二部构图上,AliGraph的实现能使单任务节省300TB存储、万CPU时算力,训练时间缩短2/3,CTR提升12%。
安全相关,反恐、垃圾检测、异常识别等5个场景
单天三十亿级边、亿级顶点的异构图,训练时间缩短1/2,模型覆盖准确率提升6%-41%不等。
此外,AliGraph已在阿里云公共云平台发布,我们会保持持续更新,希望看到GNN为更多的场景带去更优的解决方案,也希望更多的研究者愿意投入到这个方向。
结语
本文对AliGraph平台做了概况介绍,在传递我们背后思考的同时,希望给更多GNN方向的研究者带去便利,也希望感兴趣的同学加入我们,共同打造GNN的影响力并落地到实际应用。
阿里云未来将与更多的企业联合,书写智能制造新篇章。
《Elasticsearch 中国开发者调查报告》
探索开发者的现状和未来
为了解Elasticsearch 中国开发者群体,结合1186位开发者的调研数据和18位社区专家的深度访谈,Elastic 技术社区、阿里巴巴 Elasticsearch 技术团队和阿里云开发者社区联合发布了《Elasticsearch 中国开发者调查报告》。免费下载,抢先一步读懂这个“族群”吧。
2012年,Elasticsearch 首个版本发布,经过7年多的发展,Elastic系列开源项目的热度持续升温,Elastic 技术社区的用户量和开发者群体逐步壮大,也在不断进化。那么,这个群体是谁?他们在怎样使用 Elastic Stack ?他们又将如何进阶成长?
为了洞察这个独特开发者群体的发展、技术应用现状,以及整个行业的发展趋势,Elastic 技术社区、阿里巴巴 Elasticsearch 技术团队和阿里云开发者社区联合首发《Elasticsearch 中国开发者调查报告》。
本次报告从开发者的职业路径、Elasticsearch 的技术演进、技术社区的发展等三个维度,描绘了开发者群体的轮廓和成长路径。