深度残差收缩网络(4):注意力机制下的阈值设置

简介: 对于基于深度学习的分类算法,其关键不仅在于提取与标签相关的目标信息,剔除无关的信息也是非常重要的,所以要在深度神经网络中引入软阈值化。阈值的自动设置,是深度残差收缩网络的核心贡献。需要注意的是,软阈值化中的阈值,需要满足一定的条件。

对于基于深度学习的分类算法,其关键不仅在于提取与标签相关的目标信息,剔除无关的信息也是非常重要的,所以要在深度神经网络中引入软阈值化。阈值的自动设置,是深度残差收缩网络的核心贡献。需要注意的是,软阈值化中的阈值,需要满足一定的条件。这篇文章中的阈值设置,事实上,是在注意力机制下进行的。下面分别介绍阈值需要满足的条件、注意力机制以及具体的阈值设置方法。

(1)阈值需要满足的条件

在软阈值化中,阈值的取值有一定的要求:首先,阈值必须是正数;其次,阈值不能太大,否则输出会全部为零

更重要的是,每个样本,应该有不同的阈值。这是因为,许多样本所含的噪声量经常是不同的。

例如,样本A所含噪声较少,样本B所含噪声较多。那么,在降噪算法里面,样本A的阈值就应该大一点,样本B的阈值就应该小一些。在深度学习算法里,由于这些特征没有明确的物理意义,阈值的大小也无法得到解释。但是道理是相通的,即每个样本应该有不同的阈值。

(2)注意力机制

注意力机制可以从视觉的角度进行解释。人类能够通过快速扫描图像,发现目标物体,进而将更多的注意力集中在目标物体上,以捕获更多细节,同时抑制其他区域的无关信息。

Squeeze-and-Excitation Network(SENet)是一种典型的带有注意力机制的深度学习方法。对于不同的样本,不同通道上的特征,在分类任务中的重要程度,经常是不同的。SENet可以学习一组权重,自动地调整不同通道的特征的大小。这个过程,就相当于施加不同的注意力在各个通道的特征上(见下图)。
2

需要注意的是,每个样本,都有自己独特的一组权重。任意两个样本,它们的这些权重,都是不同的。在SENet中,具体的网络结构如下图所示。学习权重的路径就是,全局池化→全连接层→ReLU→全连接层→Sigmoid。
2

(3)具体的阈值设置方法

深度残差收缩网络采用了一个子网络来自动地设置阈值。这个子网络的结构,就借鉴了上述的SENet。

首先来看“通道之间共享阈值的深度残差收缩网络(Deep Residual Shrinkage Networks with Channel-shared Thresholds,简称DRSN-CS)”。我们可以看到,在红色虚线框里的子网络,学习得到了一个阈值,应用在特征图的所有通道上。

在这个子网络中,首先对输入特征图内的所有元素,取绝对值。然后经过全局均值池化(Global Average Pooling, GAP)和求平均(Average),就得到了一个特征。为了方便描述,将这个特征记为A。在另一条路径中,全局均值池化之后的特征,输入到一个小型的全连接网络之中。这个全连接网络以一个Sigmoid激活函数作为最后一步,其目的在于将输出调整到0和1之间,记为α。最终的阈值就是α×A。这样的话,阈值就是,一个0和1之间的数字×特征图的绝对值的平均值。通过这种方式,保证了阈值不仅为正数,而且不会太大。
2

然后再看“逐通道不同阈值的深度残差收缩网络(Deep Residual Shrinkage Networks with Channel-wise Thresholds,简称DRSN-CW)”。与上述的DRSN-CS相似,在红色虚线框里的子网络,学习得到了一组阈值。以相同的方式,确保了阈值有着合适的取值范围。
2

值得指出的是,通过这种方式,不同的样本就有了不同的阈值。在一定程度上,也可以理解为一种注意力机制:注意到不重要的特征,将它们剔除掉;或者说,注意到重要的特征,将它们保留下来。另外,虽然跨层的恒等路径(Identity shortcut)将不重要的特征也传递到了高层特征中,但是通过很多残差模块的堆叠,这些不重要的特征所占的比重越来越低,最终实现不重要特征的消除。

转载网址:
深度残差收缩网络:(一)背景知识 https://www.cnblogs.com/yc-9527/p/11598844.html
深度残差收缩网络:(二)整体思路 https://www.cnblogs.com/yc-9527/p/11601322.html
深度残差收缩网络:(三)网络结构 https://www.cnblogs.com/yc-9527/p/11603320.html
深度残差收缩网络:(四)注意力机制下的阈值设置 https://www.cnblogs.com/yc-9527/p/11604082.html
深度残差收缩网络:(五)实验验证 https://www.cnblogs.com/yc-9527/p/11610073.html
深度残差收缩网络:(六)代码实现 https://www.cnblogs.com/yc-9527/p/12091581.html

论文网址:
M. Zhao, S. Zhong, X. Fu, B. Tang, and M. Pecht, “Deep Residual Shrinkage Networks for Fault Diagnosis,” IEEE Transactions on Industrial Informatics, 2019, DOI: 10.1109/TII.2019.2943898
https://ieeexplore.ieee.org/document/8850096

相关文章
|
7月前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
247 3
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
|
10月前
|
安全 网络安全 数据安全/隐私保护
访问控制列表(ACL)是网络安全中的一种重要机制,用于定义和管理对网络资源的访问权限
访问控制列表(ACL)是网络安全中的一种重要机制,用于定义和管理对网络资源的访问权限。它通过设置一系列规则,控制谁可以访问特定资源、在什么条件下访问以及可以执行哪些操作。ACL 可以应用于路由器、防火墙等设备,分为标准、扩展、基于时间和基于用户等多种类型,广泛用于企业网络和互联网中,以增强安全性和精细管理。
1419 7
|
6月前
|
机器学习/深度学习 数据可视化 PyTorch
深入解析图神经网络注意力机制:数学原理与可视化实现
本文深入解析了图神经网络(GNNs)中自注意力机制的内部运作原理,通过可视化和数学推导揭示其工作机制。文章采用“位置-转移图”概念框架,并使用NumPy实现代码示例,逐步拆解自注意力层的计算过程。文中详细展示了从节点特征矩阵、邻接矩阵到生成注意力权重的具体步骤,并通过四个类(GAL1至GAL4)模拟了整个计算流程。最终,结合实际PyTorch Geometric库中的代码,对比分析了核心逻辑,为理解GNN自注意力机制提供了清晰的学习路径。
452 7
深入解析图神经网络注意力机制:数学原理与可视化实现
|
7月前
|
Web App开发 缓存 负载均衡
为什么要在网络设置静态代理ip?
随着科技和互联网的发展,越来越多企业需要使用代理服务器。设置静态代理IP可提高安全性、保护用户IP地址,实现地域性访问、缓存加速及负载均衡等优势。具体配置方法包括在Windows、macOS操作系统或浏览器中进行网络设置,输入代理服务器的地址和端口。通过合理设置代理IP,用户能更好地管理网络流量,提升隐私与性能。
186 37
|
7月前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
260 9
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
|
7月前
|
机器学习/深度学习 编解码 移动开发
RT-DETR改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
RT-DETR改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
118 5
RT-DETR改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
|
7月前
|
机器学习/深度学习 编解码 移动开发
YOLOv11改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
YOLOv11改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
168 7
YOLOv11改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
|
11月前
|
机器学习/深度学习 数据可视化 测试技术
YOLO11实战:新颖的多尺度卷积注意力(MSCA)加在网络不同位置的涨点情况 | 创新点如何在自己数据集上高效涨点,解决不涨点掉点等问题
本文探讨了创新点在自定义数据集上表现不稳定的问题,分析了不同数据集和网络位置对创新效果的影响。通过在YOLO11的不同位置引入MSCAAttention模块,展示了三种不同的改进方案及其效果。实验结果显示,改进方案在mAP50指标上分别提升了至0.788、0.792和0.775。建议多尝试不同配置,找到最适合特定数据集的解决方案。
2493 0
|
6月前
|
虚拟化 网络虚拟化 Windows
导入虚拟机到Hyper-V环境时,理解并配置网络适配器设置是确保网络通信的关键
在Hyper-V环境中,正确配置虚拟机的网络适配器是确保其网络通信的关键。需先启用Hyper-V功能并创建虚拟交换机。接着,在Hyper-V管理器中选择目标虚拟机,添加或配置网络适配器,选择合适的虚拟交换机(外部、内部或私有),并根据需求配置VLAN、MAC地址等选项。最后,启动虚拟机并验证网络连接,确保其能正常访问外部网络、与主机及其他虚拟机通信。常见问题包括无法访问外部网络或获取IP地址,需检查虚拟交换机和适配器设置。
|
8月前
|
缓存 负载均衡 安全
Swift中的网络代理设置与数据传输
Swift中的网络代理设置与数据传输

热门文章

最新文章