要强大的“黑匣子”,还是“可解释”的机器学习?| 清华AI Time激辩

简介: 要不要用准确性换可解释性?这可能是许多资源有限的创业公司,在技术研发中面临的重要问题,同时也是机器学习可解释性研究中的重要议题。

来源:大数据文摘

文章来源:微信公众号 数据派THU


要不要用准确性换可解释性?这可能是许多资源有限的创业公司,在技术研发中面临的重要问题,同时也是机器学习可解释性研究中的重要议题。

把场景具体化,让我们先来看这样一道选择题。

如果你是一个投资公司老板,针对电话诈骗检测,现在有一个可信度85%,但无法解释的“黑盒”模型,和一个可信度75%,但可解释的机器学习模型摆在你面前,你会选择哪一个?

6月19日下午,AItime第二期以《论道自动机器学习与可解释机器学习》为主题,邀请到美国伊利诺伊大学芝加哥分校(UIC)特聘教授Philip Yu(俞士纶)、美国密歇根大学梅俏竹教授、北京大学的王立威教授和百度高级研究员李兴建进行了一次对谈。

这次的对谈就从这个问题开始。

但最初的最初,让我们先来理清这两个概念:自动机器学习与可解释机器学习。

理清概念

机器学习自动化(AutoML):让机器自己炼丹

image.png

王立威教授首先解释了什么是机器学习自动化。机器学习的应用需要大量的人工干预,比如特征提取、模型选择、参数调节等,深度学习也被戏称为炼丹术。

而AutoML 是试图将这些与特征、模型、优化、评价有关的重要步骤进行自动化地学习,实现从end to end 到learning to learn,使得机器学习模型无需人工干预即可被应用。让机器自己炼丹,让深度学习自动寻找最优框架。

使用AutoML,就像是在使用一个工具,我们只需要将训练数据集传入AutoML,那么这个工具就会自动帮我们生成参数和模型,形成训练模型,这样即使不具备机器学习方面深入的专业知识也可以进行机器学习方面的工作。

可解释机器学习(Explainable ML):信任之后人与机器才能更好地互动

image.png

随着AutoML学习模型的发展,机器学习的黑箱似乎在越来越大。这种缺乏解释的情况既是一个现实问题,也是一个伦理问题。所以近年,很多研究者呼吁我们需要可解释机器学习。

梅俏竹教授在解释XML的时候强调,辩题的核心还是在于AI和人的关系。我们大多同意未来的世界是AI与人共同合作,AI目前肯定还是做不到取代人。AutoML与XML其实并不矛盾,问题在于合作中如何人要如何达成对于AI的信任。

基于人工智能的结果越重要,对可解释人工智能的需求就越大。高风险的情况下,比如自动驾驶和医疗领域,人们可能需要明确地解释是如何得出特定结果的。而相对低风险的人工智能系统可能就更适合黑盒模型,人们很难理解其结果。

为什么说,机器学习中的可解释性很重要

追逐解释是人类的天性

场景问题是大家公认的导致可解释问题重要的一个原因。我们可以容忍机器没有理由地给我们错误推荐了一首不喜欢的歌,但是把重大的投资问题或者医疗建议交由机器决定的时候,我们希望可以得到充分的解释说明。

解释是跨多个行业和科学学科的负责任的、开放的数据科学的核心。

俞士纶教授提到对可解释人工智能的需求与人类的影响会同步上升,比如医生应用机器评估数据并得出决策数据,但是机器无法回答病人的疑问。以及在过滤假新闻的时候,机器在作出粗略判断和初步筛选之后,还是需要人类解释其中细微差别。

Clever Hans问题

Hans是一匹聪明的马,人们以为它会计算加法,因为有人说2+3的时候,它就会敲5下蹄子。但后来人们发现,它只是单纯地在敲蹄子,直到人们的表情发生改变就停下来。如果没有可解释性,任何人都无法保证高正确率模型其实只是另一匹Hans。

李兴建工程师说道,可解释也是企业实际应用非常关心的问题。如果人工智能系统出错,构建者需要理解为什么会这样做,这样才能改进和修复。如果他们的人工智能服务在黑盒中存在并运行,他们就无法了解如何调试和改进它。

可解释也许是一个伪命题

有些事情是无法解释,也不需要解释

但很有意思的事,解释可能无法穷尽。

王立威教授提出一个有趣的例子。机器作出判断,这是一只猫。如果我们要寻求解释,问为什么这是一只猫,机器可能回答,因为它有皮毛,有四只猫爪……我们再问,那为什么这是皮毛?

当然机器还可以继续解释,但是解释的结果可能会更加复杂,比直接告诉你这是皮毛要曲折得多。

人类大脑是非常有限的,而现在的数据太多了。我们没有那么多脑容量去研究所有东西的可解释性。世界上有那么多应用、网站,我们每天用 Facebook、Google 的时候,也不会想着去寻求它们背后的可解释性。

对于医疗行业的可解释机器学习的应用王立威教授也提出完全不同的想法,他认为只有在开始阶段,医生不够信任系统的时候可解释才重要。而当系统性能足够优化,可解释就不再重要。在不可解释上做的能超过人类,这就是未来机器学习的可为之处。

来自Geoffrey Hinton 的驳斥

Geoffrey Hinton 曾经大胆宣称,纠结深度学习(可与不可)解释性问题根本是一个伪命题。为什么一定要存在识别数字的理论才能证明我们擅长识别数字?难道非要通透骑车每一个细节的物理力学,才能证明自己会骑车?其实不是神经网络需要理论解释,而是人类克制不住自己讲故事的冲动,理论再合理也只是主观判断,并不能帮助我们理解为什么。

王立威教授表示赞同,以历史做类比。历史书上简单归纳出的胜败输赢难道就是真实的历史吗,不过是人类编造出的故事。真实的历史复杂,现实生活复杂,只言片语的解释和理论不过是管窥蠡测。

通过神经网络反思人的思维,同一个网络框架,初始点不同结果可能完全不同。解释可能会有两套截然不同的解释,就像对同一件事不同的人可能会有不同的解释。

一个人都无法完全理解另一个人,更何况与人的思维完全不同的机器?即使把alpha go下围棋中的所有数据告诉人也没有用,因为机器每一步的判断所用的数据是百万量级,而人最多处理到百的程度。就算打开黑匣,一千个人可能会看到一千种解释。

image.png

俞士纶教授认为Hinton的说法还是有些激进,解释不仅是为了说服,解释的形式和含义都非常之广,就算是autoML我们还是要朝着可解释的方向不断推进。

梅俏竹教授则认为单纯讨论autoML还是XML是没有意义的,就像我们判断autoML好不好,怎么算是一个好的推荐算法?如果机器中午十二点推荐你去吃午饭,的确它的准确率是百分之百,但是对于用户来说这是完全没有意义的一个推荐。评判需要加入人的因素进行考量,还是要看人机配合得怎么样,加入用户体验。

autoML的能耗问题:ACL论文痛批其捡芝麻丢西瓜

最近一份提交到自然语言处理顶会ACL 2019的论文引起热议,研究人员对几种常见的NLP模型进行碳排放评估后发现,像Transformer、GPT-2等流行的深度神经网络的训练过程可以排放超过62.6万磅的二氧化碳当量,几乎是美国汽车平均寿命期内排放量(包括制造过程)的五倍。

某些模型可能经过了千百次的训练之后取得最优成果,但是实际进展非常微小,而背后的代价是不成比例的计算量和碳排放。

李文钰提出业界现在的解决办法有比如共享参数、热启动,利用之前训练好的参数,避免再从头训练一个模型。

真正的autoML应该是在大型数据集上搜索,操作类型,拓扑结构,加上人的先验知识,未来希望找到又小又高效的好的模型。我们希望用机器代替节约人力,但是人也要去限制一些盲目搜索,节约成本的约束。

未来之路:炼金,观星,算命都不可取

image.png

几位教授最后都同意autoML和XML在未来是可以结合的。不管是autoML还是XML,现在还是在底层信号的层面运作,比如识别图像、文本,关键还是在知识层面,我们需要的是对整个网络结构更高层、更进一步的理解。

梅教授提出过犹不及,有三条走得太过的路是炼金、观星和算命。

炼金就是走极端的autoML之路。不要为了全自动就抛开所有代价去追求自动化,最后你也无法保证炼出来的是金子还是破铁;

观星,扩大范围,如果非要在一大堆的变量中拼命找联系,总能找寻到一二;

而算命的原理是找一些你愿意听的说,讲你爱听的故事,观星和算命都是在可解释的道路上走得太远。

最后的最后,梅教授也提醒大家,解释性可以解释部分问题,关于伦理,关于道德,但是它不是万能药。不要纠结于理解,为了理解而理解。

编辑:文婧

目录
相关文章
|
2月前
|
人工智能 自然语言处理 IDE
模型微调不再被代码难住!PAI和Qwen3-Coder加速AI开发新体验
通义千问 AI 编程大模型 Qwen3-Coder 正式开源,阿里云人工智能平台 PAI 支持云上一键部署 Qwen3-Coder 模型,并可在交互式建模环境中使用 Qwen3-Coder 模型。
655 109
|
6月前
|
机器学习/深度学习 人工智能 供应链
从概念到商业价值:AI、机器学习与深度学习全景指南
在这个科技飞速发展的时代🚀,人工智能正以惊人的速度渗透到我们的生活和工作中👀。但面对铺天盖地的AI术语和概念,很多人感到困惑不已😣。"AI"、"机器学习"、"深度学习"和"神经网络"到底有什么区别?它们如何相互关联?如何利用这些技术提升工作效率和创造价值?
|
4月前
|
机器学习/深度学习 人工智能 监控
AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程
本系列文章深入讲解了从Seq2Seq、RNN到Transformer,再到GPT模型的关键技术原理与实现细节,帮助读者全面掌握Transformer及其在NLP中的应用。同时,通过一个房价预测的完整案例,介绍了算法工程师如何利用数据训练模型并解决实际问题,涵盖需求分析、数据收集、模型训练与部署等全流程。文章适合初学者和开发者学习AI基础与实战技能。
627 25
AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程
|
5月前
|
人工智能 监控 测试技术
云上AI推理平台全掌握 (1):PAI-EAS LLM服务一键压测
在AI技术飞速发展的今天,大语言模型(LLM)、多模态模型等前沿技术正深刻改变行业格局。推理服务是大模型从“实验室突破”走向“产业级应用”的必要环节,需直面高并发流量洪峰、低延时响应诉求、异构硬件优化适配、成本精准控制等复杂挑战。 阿里云人工智能平台 PAI 致力于为用户提供全栈式、高可用的推理服务能力。在本系列技术专题中,我们将围绕分布式推理架构、Serverless 弹性资源全球调度、压测调优和服务可观测等关键技术方向,展现 PAI 平台在推理服务侧的产品能力,助力企业和开发者在 AI 时代抢占先机,让我们一起探索云上 AI 推理的无限可能,释放大模型的真正价值!
|
5月前
|
机器学习/深度学习 PyTorch API
昇腾AI4S图机器学习:DGL消息传递接口的PyG替换
DGL (Deep Graph Learning) 和 PyG (Pytorch Geometric) 是两个主流的图神经网络库,它们在API设计和底层实现上有一定差异,在不同场景下,研究人员会使用不同的依赖库,昇腾NPU对PyG图机器学习库的支持亲和度更高,因此有些时候需要做DGL接口的PyG替换。
|
6月前
|
数据可视化 Rust 机器学习/深度学习
mlop.ai 无脑使用教程 (机器学习工具 WandB/ClearML 的首个国区开源平替)
mlop.ai 是首个为国区用户优化的机器学习工具,全栈免费开源,是主流付费解决方案 ClearML/WandB 的开源平替。常规实验追踪的工具经常大幅人为降速,mlop因为底层为Rust代码,能轻松支持高频数据写入。如需更多开发者帮助或企业支持,敬请联系cn@mlop.ai
365 12
mlop.ai 无脑使用教程 (机器学习工具 WandB/ClearML 的首个国区开源平替)
|
5月前
|
机器学习/深度学习 PyTorch API
昇腾AI4S图机器学习:DGL图构建接口的PyG替换
本文探讨了在图神经网络中将DGL接口替换为PyG实现的方法,重点以RFdiffusion蛋白质设计模型中的SE3Transformer为例。SE3Transformer通过SE(3)等变性提取三维几何特征,其图构建部分依赖DGL接口。文章详细介绍了两个关键函数的替换:`make_full_graph` 和 `make_topk_graph`。前者构建完全连接图,后者生成k近邻图。通过PyG的高效实现(如`knn_graph`),我们简化了图结构创建过程,并调整边特征处理逻辑以兼容不同框架,从而更好地支持昇腾NPU等硬件环境。此方法为跨库迁移提供了实用参考。
|
1月前
|
人工智能 运维 Kubernetes
Serverless 应用引擎 SAE:为传统应用托底,为 AI 创新加速
在容器技术持续演进与 AI 全面爆发的当下,企业既要稳健托管传统业务,又要高效落地 AI 创新,如何在复杂的基础设施与频繁的版本变化中保持敏捷、稳定与低成本,成了所有技术团队的共同挑战。阿里云 Serverless 应用引擎(SAE)正是为应对这一时代挑战而生的破局者,SAE 以“免运维、强稳定、极致降本”为核心,通过一站式的应用级托管能力,同时支撑传统应用与 AI 应用,让企业把更多精力投入到业务创新。
396 29
|
1月前
|
消息中间件 人工智能 安全
云原生进化论:加速构建 AI 应用
本文将和大家分享过去一年在支持企业构建 AI 应用过程的一些实践和思考。
452 28

热门文章

最新文章

下一篇
oss云网关配置