【从入门到放弃-Java】并发编程-JUC-CopyOnWriteArraySet

简介: 前言CopyOnWriteArraySet也是JUC下常用容器,其底层实现是基于CopyOnWriteArrayList的,关于CopyOnWriteArrayList的详情可以查看【从入门到放弃-Java】并发编程-JUC-CopyOnWriteArrayList,接下来我们看下源码。

前言

CopyOnWriteArraySet也是JUC下常用容器,其底层实现是基于CopyOnWriteArrayList的,关于CopyOnWriteArrayList的详情可以查看【从入门到放弃-Java】并发编程-JUC-CopyOnWriteArrayList,接下来我们看下源码。

CopyOnWriteArraySet

CopyOnWriteArraySet

/**
 * Creates an empty set.
 */
 //简单粗暴,只有一个成员变量al,是CopyOnWriteArrayList类型的,初始化时,new一个CopyOnWriteArrayList赋值给al。
public CopyOnWriteArraySet() {
    al = new CopyOnWriteArrayList<E>();
}

/**
 * Creates a set containing all of the elements of the specified
 * collection.
 *
 * @param c the collection of elements to initially contain
 * @throws NullPointerException if the specified collection is null
 */
public CopyOnWriteArraySet(Collection<? extends E> c) {
    if (c.getClass() == CopyOnWriteArraySet.class) {
        @SuppressWarnings("unchecked") CopyOnWriteArraySet<E> cc =
            (CopyOnWriteArraySet<E>)c;
        al = new CopyOnWriteArrayList<E>(cc.al);
    }
    else {
        al = new CopyOnWriteArrayList<E>();
        al.addAllAbsent(c);
    }
}

add

/**
 * Adds the specified element to this set if it is not already present.
 * More formally, adds the specified element {@code e} to this set if
 * the set contains no element {@code e2} such that
 * {@code Objects.equals(e, e2)}.
 * If this set already contains the element, the call leaves the set
 * unchanged and returns {@code false}.
 *
 * @param e element to be added to this set
 * @return {@code true} if this set did not already contain the specified
 *         element
 */
public boolean add(E e) {
    //调用CopyOnWriteArrayList的addIfAbsent方法。
    return al.addIfAbsent(e);
}

//看下CopyOnWriteArrayList的addIfAbsent方法如何实现。
/**
 * Appends the element, if not present.
 *
 * @param e element to be added to this list, if absent
 * @return {@code true} if the element was added
 */
public boolean addIfAbsent(E e) {
    Object[] snapshot = getArray();
    //先查找e是否在存在,不存在的话 调用addIfAbsent(E e, Object[] snapshot)方法
    return indexOfRange(e, snapshot, 0, snapshot.length) < 0
        && addIfAbsent(e, snapshot);
}

/**
 * A version of addIfAbsent using the strong hint that given
 * recent snapshot does not contain e.
 */
private boolean addIfAbsent(E e, Object[] snapshot) {
    //加锁
    synchronized (lock) {
        Object[] current = getArray();
        int len = current.length;
        //加锁后check下快照是否被改动
        if (snapshot != current) {
            //如果改动过,则判断改动后的数组是否包含要添加的元素,如果有的话,则返回失败
            // Optimize for lost race to another addXXX operation
            int common = Math.min(snapshot.length, len);
            for (int i = 0; i < common; i++)
                if (current[i] != snapshot[i]
                    && Objects.equals(e, current[i]))
                    return false;
            if (indexOfRange(e, current, common, len) >= 0)
                    return false;
        }
        //验证数组中没有此元素,则在末尾添加。
        Object[] newElements = Arrays.copyOf(current, len + 1);
        newElements[len] = e;
        //替换原数组。
        setArray(newElements);
        return true;
    }
}

addAll

/**
 * Adds all of the elements in the specified collection to this set if
 * they're not already present.  If the specified collection is also a
 * set, the {@code addAll} operation effectively modifies this set so
 * that its value is the <i>union</i> of the two sets.  The behavior of
 * this operation is undefined if the specified collection is modified
 * while the operation is in progress.
 *
 * @param  c collection containing elements to be added to this set
 * @return {@code true} if this set changed as a result of the call
 * @throws NullPointerException if the specified collection is null
 * @see #add(Object)
 */
public boolean addAll(Collection<? extends E> c) {
    //直接调用CopyOnWriteArrayList的addAllAbsent方法。
    return al.addAllAbsent(c) > 0;
}

/**
 * Appends all of the elements in the specified collection that
 * are not already contained in this list, to the end of
 * this list, in the order that they are returned by the
 * specified collection's iterator.
 *
 * @param c collection containing elements to be added to this list
 * @return the number of elements added
 * @throws NullPointerException if the specified collection is null
 * @see #addIfAbsent(Object)
 */
public int addAllAbsent(Collection<? extends E> c) {
    //将要添加的元素变为数组
    Object[] cs = c.toArray();
    if (cs.length == 0)
        return 0;
    //加锁
    synchronized (lock) {
        Object[] es = getArray();
        int len = es.length;
        int added = 0;
        // uniquify and compact elements in cs
        //遍历要添加的数组,如果在List的数组中不存在此元素,则添加到cs数组中
        for (int i = 0; i < cs.length; ++i) {
            Object e = cs[i];
            if (indexOfRange(e, es, 0, len) < 0 &&
                indexOfRange(e, cs, 0, added) < 0)
                cs[added++] = e;
        }
        if (added > 0) {
            Object[] newElements = Arrays.copyOf(es, len + added);
            //将cs数组的前added个元素添加在List数组后面
            System.arraycopy(cs, 0, newElements, len, added);
            //替换原数组
            setArray(newElements);
        }
        return added;
    }
}

remove

/**
 * Removes the specified element from this set if it is present.
 * More formally, removes an element {@code e} such that
 * {@code Objects.equals(o, e)}, if this set contains such an element.
 * Returns {@code true} if this set contained the element (or
 * equivalently, if this set changed as a result of the call).
 * (This set will not contain the element once the call returns.)
 *
 * @param o object to be removed from this set, if present
 * @return {@code true} if this set contained the specified element
 */
public boolean remove(Object o) {
    //直接调用CopyOnWriteArrayList的remove
    return al.remove(o);
}

总结

通过源码分析,我们了解到,CopyOnWriteArraySet主要是依赖CopyOnWriteArrayList来实现各方法的。
因此与CopyOnWriteArrayList一样,更适用于读多写少的并发操作中。
详细原因在【从入门到放弃-Java】并发编程-JUC-CopyOnWriteArrayList中以及解释过了,这里不再赘述。

值得一提的是,常用的非并发容器HashSet,是基于HashMap实现的,利用HashMap中Entry的key做到唯一值,Entry的value是一个不可变静态对象Object。但是JUC中并发Set是却不是基于Map的,学习完这三章并发容器,你能回答这是为什么吗?可以在评论中留言,我们一起探讨下哦~

更多文章

见我的博客:https://nc2era.com

written by AloofJr,转载请注明出处

目录
相关文章
|
5天前
|
安全 Java 调度
深入理解Java并发编程:线程安全与性能优化
【5月更文挑战第12天】 在现代软件开发中,多线程编程是提升应用程序性能和响应能力的关键手段之一。特别是在Java语言中,由于其内置的跨平台线程支持,开发者可以轻松地创建和管理线程。然而,随之而来的并发问题也不容小觑。本文将探讨Java并发编程的核心概念,包括线程安全策略、锁机制以及性能优化技巧。通过实例分析与性能比较,我们旨在为读者提供一套既确保线程安全又兼顾性能的编程指导。
|
5天前
|
数据采集 安全 Java
Java并发编程学习12-任务取消(上)
【5月更文挑战第6天】本篇介绍了取消策略、线程中断、中断策略 和 响应中断的内容
30 4
Java并发编程学习12-任务取消(上)
|
1天前
|
Java
Java一分钟之-并发编程:线程间通信(Phaser, CyclicBarrier, Semaphore)
【5月更文挑战第19天】Java并发编程中,Phaser、CyclicBarrier和Semaphore是三种强大的同步工具。Phaser用于阶段性任务协调,支持动态注册;CyclicBarrier允许线程同步执行,适合循环任务;Semaphore控制资源访问线程数,常用于限流和资源池管理。了解其使用场景、常见问题及避免策略,结合代码示例,能有效提升并发程序效率。注意异常处理和资源管理,以防止并发问题。
21 2
|
1天前
|
安全 Java 容器
Java一分钟之-并发编程:线程安全的集合类
【5月更文挑战第19天】Java提供线程安全集合类以解决并发环境中的数据一致性问题。例如,Vector是线程安全但效率低;可以使用Collections.synchronizedXxx将ArrayList或HashMap同步;ConcurrentHashMap是高效线程安全的映射;CopyOnWriteArrayList和CopyOnWriteArraySet适合读多写少场景;LinkedBlockingQueue是生产者-消费者模型中的线程安全队列。注意,过度同步可能影响性能,应尽量减少共享状态并利用并发工具类。
15 2
|
2天前
|
Java
深入理解Java并发编程:线程池的应用与优化
【5月更文挑战第18天】本文将深入探讨Java并发编程中的重要概念——线程池。我们将了解线程池的基本概念,应用场景,以及如何优化线程池的性能。通过实例分析,我们将看到线程池如何提高系统性能,减少资源消耗,并提高系统的响应速度。
12 5
|
2天前
|
安全 Java 容器
深入理解Java并发编程:线程安全与性能优化
【5月更文挑战第18天】随着多核处理器的普及,并发编程变得越来越重要。Java提供了丰富的并发编程工具,如synchronized关键字、显式锁Lock、原子类、并发容器等。本文将深入探讨Java并发编程的核心概念,包括线程安全、死锁、资源竞争等,并分享一些性能优化的技巧。
|
2天前
|
安全 Java
Java一分钟之-并发编程:原子类(AtomicInteger, AtomicReference)
【5月更文挑战第18天】Java并发编程中的原子类如`AtomicInteger`和`AtomicReference`提供无锁原子操作,适用于高性能并发场景。`AtomicInteger`支持原子整数操作,而`AtomicReference`允许原子更新对象引用。常见问题包括误解原子性、过度依赖原子类以及忽略对象内部状态的并发控制。要避免这些问题,需明确原子操作边界,合理选择同步策略,并精确控制原子更新。示例代码展示了如何使用这两个类。正确理解和使用原子类是构建高效并发程序的关键。
12 1
|
2天前
|
安全 Java 容器
Java一分钟之-并发编程:并发容器(ConcurrentHashMap, CopyOnWriteArrayList)
【5月更文挑战第18天】本文探讨了Java并发编程中的`ConcurrentHashMap`和`CopyOnWriteArrayList`,两者为多线程数据共享提供高效、线程安全的解决方案。`ConcurrentHashMap`采用分段锁策略,而`CopyOnWriteArrayList`适合读多写少的场景。注意,`ConcurrentHashMap`的`forEach`需避免手动同步,且并发修改时可能导致`ConcurrentModificationException`。`CopyOnWriteArrayList`在写操作时会复制数组。理解和正确使用这些特性是优化并发性能的关键。
9 1
|
2天前
|
Java 编译器
Java并发编程中的锁优化策略
【5月更文挑战第18天】在Java并发编程中,锁是一种常用的同步机制,用于保护共享资源的访问。然而,不当的锁使用可能导致性能问题和死锁风险。本文将探讨Java中锁的优化策略,包括锁粗化、锁消除、锁分离和读写锁等技术,以提高并发程序的性能和可靠性。
|
3天前
|
Java 编译器
Java 并发编程中的锁优化策略
【5月更文挑战第17天】在 Java 并发编程中,锁是一种常见的同步机制,用于保护共享资源的访问。然而,不当使用锁可能导致性能问题和死锁风险。本文将探讨 Java 中的锁优化策略,包括锁粗化、锁消除、锁降级以及读写锁等技术,以提高并发程序的性能和可靠性。