鸢尾花分类预测数据分析

简介: 鸢尾花分类预测数据分析目标:根据未知种类鸢尾花的特征预测其种类数据:鸢尾花数据集分析: 描述性分析探索性分析 建模分析模型分析迭代分析成果:位置种类鸢尾花的预测结果import numpy as npimport matplotlib.

鸢尾花分类预测数据分析

  • 目标:根据未知种类鸢尾花的特征预测其种类
  • 数据:鸢尾花数据集
  • 分析:
    • 描述性分析
    • 探索性分析
      • 建模分析
      • 模型分析
      • 迭代分析
  • 成果:位置种类鸢尾花的预测结果
import numpy as np
import matplotlib.pyplot as plt
# import pandas as pd
from sklearn import neighbors, datasets


加载鸢尾花数据集

iris = datasets.load_iris()
iris
{'DESCR': 'Iris Plants Database\n====================\n\nNotes\n-----\nData Set Characteristics:\n    :Number of Instances: 150 (50 in each of three classes)\n    :Number of Attributes: 4 numeric, predictive attributes and the class\n    :Attribute Information:\n        - sepal length in cm\n        - sepal width in cm\n        - petal length in cm\n        - petal width in cm\n        - class:\n                - Iris-Setosa\n                - Iris-Versicolour\n                - Iris-Virginica\n    :Summary Statistics:\n\n    ============== ==== ==== ======= ===== ====================\n                    Min  Max   Mean    SD   Class Correlation\n    ============== ==== ==== ======= ===== ====================\n    sepal length:   4.3  7.9   5.84   0.83    0.7826\n    sepal width:    2.0  4.4   3.05   0.43   -0.4194\n    petal length:   1.0  6.9   3.76   1.76    0.9490  (high!)\n    petal width:    0.1  2.5   1.20  0.76     0.9565  (high!)\n    ============== ==== ==== ======= ===== ====================\n\n    :Missing Attribute Values: None\n    :Class Distribution: 33.3% for each of 3 classes.\n    :Creator: R.A. Fisher\n    :Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)\n    :Date: July, 1988\n\nThis is a copy of UCI ML iris datasets.\nhttp://archive.ics.uci.edu/ml/datasets/Iris\n\nThe famous Iris database, first used by Sir R.A Fisher\n\nThis is perhaps the best known database to be found in the\npattern recognition literature.  Fisher\'s paper is a classic in the field and\nis referenced frequently to this day.  (See Duda & Hart, for example.)  The\ndata set contains 3 classes of 50 instances each, where each class refers to a\ntype of iris plant.  One class is linearly separable from the other 2; the\nlatter are NOT linearly separable from each other.\n\nReferences\n----------\n   - Fisher,R.A. "The use of multiple measurements in taxonomic problems"\n     Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to\n     Mathematical Statistics" (John Wiley, NY, 1950).\n   - Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.\n     (Q327.D83) John Wiley & Sons.  ISBN 0-471-22361-1.  See page 218.\n   - Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System\n     Structure and Classification Rule for Recognition in Partially Exposed\n     Environments".  IEEE Transactions on Pattern Analysis and Machine\n     Intelligence, Vol. PAMI-2, No. 1, 67-71.\n   - Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule".  IEEE Transactions\n     on Information Theory, May 1972, 431-433.\n   - See also: 1988 MLC Proceedings, 54-64.  Cheeseman et al"s AUTOCLASS II\n     conceptual clustering system finds 3 classes in the data.\n   - Many, many more ...\n',
 'data': array([[ 5.1,  3.5,  1.4,  0.2],
        [ 4.9,  3. ,  1.4,  0.2],
        [ 4.7,  3.2,  1.3,  0.2],
        [ 4.6,  3.1,  1.5,  0.2],
        [ 5. ,  3.6,  1.4,  0.2],
        [ 5.4,  3.9,  1.7,  0.4],
        [ 4.6,  3.4,  1.4,  0.3],
        [ 5. ,  3.4,  1.5,  0.2],
        [ 4.4,  2.9,  1.4,  0.2],
        [ 4.9,  3.1,  1.5,  0.1],
        [ 5.4,  3.7,  1.5,  0.2],
        [ 4.8,  3.4,  1.6,  0.2],
        [ 4.8,  3. ,  1.4,  0.1],
        [ 4.3,  3. ,  1.1,  0.1],
        [ 5.8,  4. ,  1.2,  0.2],
        [ 5.7,  4.4,  1.5,  0.4],
        [ 5.4,  3.9,  1.3,  0.4],
        [ 5.1,  3.5,  1.4,  0.3],
        [ 5.7,  3.8,  1.7,  0.3],
        [ 5.1,  3.8,  1.5,  0.3],
        [ 5.4,  3.4,  1.7,  0.2],
        [ 5.1,  3.7,  1.5,  0.4],
        [ 4.6,  3.6,  1. ,  0.2],
        [ 5.1,  3.3,  1.7,  0.5],
        [ 4.8,  3.4,  1.9,  0.2],
        [ 5. ,  3. ,  1.6,  0.2],
        [ 5. ,  3.4,  1.6,  0.4],
        [ 5.2,  3.5,  1.5,  0.2],
        [ 5.2,  3.4,  1.4,  0.2],
        [ 4.7,  3.2,  1.6,  0.2],
        [ 4.8,  3.1,  1.6,  0.2],
        [ 5.4,  3.4,  1.5,  0.4],
        [ 5.2,  4.1,  1.5,  0.1],
        [ 5.5,  4.2,  1.4,  0.2],
        [ 4.9,  3.1,  1.5,  0.1],
        [ 5. ,  3.2,  1.2,  0.2],
        [ 5.5,  3.5,  1.3,  0.2],
        [ 4.9,  3.1,  1.5,  0.1],
        [ 4.4,  3. ,  1.3,  0.2],
        [ 5.1,  3.4,  1.5,  0.2],
        [ 5. ,  3.5,  1.3,  0.3],
        [ 4.5,  2.3,  1.3,  0.3],
        [ 4.4,  3.2,  1.3,  0.2],
        [ 5. ,  3.5,  1.6,  0.6],
        [ 5.1,  3.8,  1.9,  0.4],
        [ 4.8,  3. ,  1.4,  0.3],
        [ 5.1,  3.8,  1.6,  0.2],
        [ 4.6,  3.2,  1.4,  0.2],
        [ 5.3,  3.7,  1.5,  0.2],
        [ 5. ,  3.3,  1.4,  0.2],
        [ 7. ,  3.2,  4.7,  1.4],
        [ 6.4,  3.2,  4.5,  1.5],
        [ 6.9,  3.1,  4.9,  1.5],
        [ 5.5,  2.3,  4. ,  1.3],
        [ 6.5,  2.8,  4.6,  1.5],
        [ 5.7,  2.8,  4.5,  1.3],
        [ 6.3,  3.3,  4.7,  1.6],
        [ 4.9,  2.4,  3.3,  1. ],
        [ 6.6,  2.9,  4.6,  1.3],
        [ 5.2,  2.7,  3.9,  1.4],
        [ 5. ,  2. ,  3.5,  1. ],
        [ 5.9,  3. ,  4.2,  1.5],
        [ 6. ,  2.2,  4. ,  1. ],
        [ 6.1,  2.9,  4.7,  1.4],
        [ 5.6,  2.9,  3.6,  1.3],
        [ 6.7,  3.1,  4.4,  1.4],
        [ 5.6,  3. ,  4.5,  1.5],
        [ 5.8,  2.7,  4.1,  1. ],
        [ 6.2,  2.2,  4.5,  1.5],
        [ 5.6,  2.5,  3.9,  1.1],
        [ 5.9,  3.2,  4.8,  1.8],
        [ 6.1,  2.8,  4. ,  1.3],
        [ 6.3,  2.5,  4.9,  1.5],
        [ 6.1,  2.8,  4.7,  1.2],
        [ 6.4,  2.9,  4.3,  1.3],
        [ 6.6,  3. ,  4.4,  1.4],
        [ 6.8,  2.8,  4.8,  1.4],
        [ 6.7,  3. ,  5. ,  1.7],
        [ 6. ,  2.9,  4.5,  1.5],
        [ 5.7,  2.6,  3.5,  1. ],
        [ 5.5,  2.4,  3.8,  1.1],
        [ 5.5,  2.4,  3.7,  1. ],
        [ 5.8,  2.7,  3.9,  1.2],
        [ 6. ,  2.7,  5.1,  1.6],
        [ 5.4,  3. ,  4.5,  1.5],
        [ 6. ,  3.4,  4.5,  1.6],
        [ 6.7,  3.1,  4.7,  1.5],
        [ 6.3,  2.3,  4.4,  1.3],
        [ 5.6,  3. ,  4.1,  1.3],
        [ 5.5,  2.5,  4. ,  1.3],
        [ 5.5,  2.6,  4.4,  1.2],
        [ 6.1,  3. ,  4.6,  1.4],
        [ 5.8,  2.6,  4. ,  1.2],
        [ 5. ,  2.3,  3.3,  1. ],
        [ 5.6,  2.7,  4.2,  1.3],
        [ 5.7,  3. ,  4.2,  1.2],
        [ 5.7,  2.9,  4.2,  1.3],
        [ 6.2,  2.9,  4.3,  1.3],
        [ 5.1,  2.5,  3. ,  1.1],
        [ 5.7,  2.8,  4.1,  1.3],
        [ 6.3,  3.3,  6. ,  2.5],
        [ 5.8,  2.7,  5.1,  1.9],
        [ 7.1,  3. ,  5.9,  2.1],
        [ 6.3,  2.9,  5.6,  1.8],
        [ 6.5,  3. ,  5.8,  2.2],
        [ 7.6,  3. ,  6.6,  2.1],
        [ 4.9,  2.5,  4.5,  1.7],
        [ 7.3,  2.9,  6.3,  1.8],
        [ 6.7,  2.5,  5.8,  1.8],
        [ 7.2,  3.6,  6.1,  2.5],
        [ 6.5,  3.2,  5.1,  2. ],
        [ 6.4,  2.7,  5.3,  1.9],
        [ 6.8,  3. ,  5.5,  2.1],
        [ 5.7,  2.5,  5. ,  2. ],
        [ 5.8,  2.8,  5.1,  2.4],
        [ 6.4,  3.2,  5.3,  2.3],
        [ 6.5,  3. ,  5.5,  1.8],
        [ 7.7,  3.8,  6.7,  2.2],
        [ 7.7,  2.6,  6.9,  2.3],
        [ 6. ,  2.2,  5. ,  1.5],
        [ 6.9,  3.2,  5.7,  2.3],
        [ 5.6,  2.8,  4.9,  2. ],
        [ 7.7,  2.8,  6.7,  2. ],
        [ 6.3,  2.7,  4.9,  1.8],
        [ 6.7,  3.3,  5.7,  2.1],
        [ 7.2,  3.2,  6. ,  1.8],
        [ 6.2,  2.8,  4.8,  1.8],
        [ 6.1,  3. ,  4.9,  1.8],
        [ 6.4,  2.8,  5.6,  2.1],
        [ 7.2,  3. ,  5.8,  1.6],
        [ 7.4,  2.8,  6.1,  1.9],
        [ 7.9,  3.8,  6.4,  2. ],
        [ 6.4,  2.8,  5.6,  2.2],
        [ 6.3,  2.8,  5.1,  1.5],
        [ 6.1,  2.6,  5.6,  1.4],
        [ 7.7,  3. ,  6.1,  2.3],
        [ 6.3,  3.4,  5.6,  2.4],
        [ 6.4,  3.1,  5.5,  1.8],
        [ 6. ,  3. ,  4.8,  1.8],
        [ 6.9,  3.1,  5.4,  2.1],
        [ 6.7,  3.1,  5.6,  2.4],
        [ 6.9,  3.1,  5.1,  2.3],
        [ 5.8,  2.7,  5.1,  1.9],
        [ 6.8,  3.2,  5.9,  2.3],
        [ 6.7,  3.3,  5.7,  2.5],
        [ 6.7,  3. ,  5.2,  2.3],
        [ 6.3,  2.5,  5. ,  1.9],
        [ 6.5,  3. ,  5.2,  2. ],
        [ 6.2,  3.4,  5.4,  2.3],
        [ 5.9,  3. ,  5.1,  1.8]]),
 'feature_names': ['sepal length (cm)',
  'sepal width (cm)',
  'petal length (cm)',
  'petal width (cm)'],
 'target': array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]),
 'target_names': array(['setosa', 'versicolor', 'virginica'], 
       dtype='<U10')}


数据认知

type(iris)
sklearn.datasets.base.Bunch

数据集,样本150个

150行,4列

'data':array([
  [ 5.1,  3.5,  1.4,  0.2],
  [ 4.9,  3. ,  1.4,  0.2],
  [ 4.7,  3.2,  1.3,  0.2],
  [ 4.6,  3.1,  1.5,  0.2],
  [ 5. ,  3.6,  1.4,  0.2],
  [ 5.4,  3.9,  1.7,  0.4],
  ...
])

特征:4个

'feature_names': [
  'sepal length (cm)', #花萼长度
  'sepal width (cm)', #花萼宽度
  'petal length (cm)', #花瓣长度
  'petal width (cm)' #花瓣宽度
],

结果

标签1个:1行,150列

'target': array([
  0, 0, 0... 1, 1, 1... 2, 2, 2...
])

结果对应

'target_names': array([
  'setosa', # 0 山鸢尾
  'versicolor', # 1 变色鸢尾
  'virginica' # 2 维吉尼亚鸢尾
]}

描述性分析

se = iris.data[0:50] # 山鸢尾特征,50行
ve = iris.data[50:100] # 变色鸢尾特征,50行
vi = iris.data[100:150] # 维吉尼亚特征,50行
se

comb = [[0,1],[0,2],[0,3],[1,2],[1,3],[2,3]] #二维图像,4个特征两两组合

se[:,comb[0][0]] # 山鸢尾特征1,花萼长
array([ 5.1,  4.9,  4.7,  4.6,  5. ,  5.4,  4.6,  5. ,  4.4,  4.9,  5.4,
        4.8,  4.8,  4.3,  5.8,  5.7,  5.4,  5.1,  5.7,  5.1,  5.4,  5.1,
        4.6,  5.1,  4.8,  5. ,  5. ,  5.2,  5.2,  4.7,  4.8,  5.4,  5.2,
        5.5,  4.9,  5. ,  5.5,  4.9,  4.4,  5.1,  5. ,  4.5,  4.4,  5. ,
        5.1,  4.8,  5.1,  4.6,  5.3,  5. ])


图像绘制

plt.figure(1, figsize=(18,10)) 

for i in range(6):
    plt.subplot(231+i)
    plt.plot(se[:,comb[i][0]],se[:,comb[i][1]],'o',color='#ff0000')
    plt.plot(ve[:,comb[i][0]],ve[:,comb[i][1]],'^',color='#00ff00')
    plt.plot(vi[:,comb[i][0]],vi[:,comb[i][1]],'+',color='#ff00ff')

plt.show()

这里写图片描述


探索性分析

建模分析

# x轴,训练数据
x = iris.data
x
array([[ 5.1,  3.5,  1.4,  0.2],
       [ 4.9,  3. ,  1.4,  0.2],
       [ 4.7,  3.2,  1.3,  0.2],
       [ 4.6,  3.1,  1.5,  0.2],
       [ 5. ,  3.6,  1.4,  0.2],
       [ 5.4,  3.9,  1.7,  0.4],
       [ 4.6,  3.4,  1.4,  0.3],
       [ 5. ,  3.4,  1.5,  0.2],
       [ 4.4,  2.9,  1.4,  0.2],
       [ 4.9,  3.1,  1.5,  0.1],
       [ 5.4,  3.7,  1.5,  0.2],
       [ 4.8,  3.4,  1.6,  0.2],
       [ 4.8,  3. ,  1.4,  0.1],
       [ 4.3,  3. ,  1.1,  0.1],
       [ 5.8,  4. ,  1.2,  0.2],
       [ 5.7,  4.4,  1.5,  0.4],
       [ 5.4,  3.9,  1.3,  0.4],
       [ 5.1,  3.5,  1.4,  0.3],
       [ 5.7,  3.8,  1.7,  0.3],
       [ 5.1,  3.8,  1.5,  0.3],
       [ 5.4,  3.4,  1.7,  0.2],
       [ 5.1,  3.7,  1.5,  0.4],
       [ 4.6,  3.6,  1. ,  0.2],
       [ 5.1,  3.3,  1.7,  0.5],
       [ 4.8,  3.4,  1.9,  0.2],
       [ 5. ,  3. ,  1.6,  0.2],
       [ 5. ,  3.4,  1.6,  0.4],
       [ 5.2,  3.5,  1.5,  0.2],
       [ 5.2,  3.4,  1.4,  0.2],
       [ 4.7,  3.2,  1.6,  0.2],
       [ 4.8,  3.1,  1.6,  0.2],
       [ 5.4,  3.4,  1.5,  0.4],
       [ 5.2,  4.1,  1.5,  0.1],
       [ 5.5,  4.2,  1.4,  0.2],
       [ 4.9,  3.1,  1.5,  0.1],
       [ 5. ,  3.2,  1.2,  0.2],
       [ 5.5,  3.5,  1.3,  0.2],
       [ 4.9,  3.1,  1.5,  0.1],
       [ 4.4,  3. ,  1.3,  0.2],
       [ 5.1,  3.4,  1.5,  0.2],
       [ 5. ,  3.5,  1.3,  0.3],
       [ 4.5,  2.3,  1.3,  0.3],
       [ 4.4,  3.2,  1.3,  0.2],
       [ 5. ,  3.5,  1.6,  0.6],
       [ 5.1,  3.8,  1.9,  0.4],
       [ 4.8,  3. ,  1.4,  0.3],
       [ 5.1,  3.8,  1.6,  0.2],
       [ 4.6,  3.2,  1.4,  0.2],
       [ 5.3,  3.7,  1.5,  0.2],
       [ 5. ,  3.3,  1.4,  0.2],
       [ 7. ,  3.2,  4.7,  1.4],
       [ 6.4,  3.2,  4.5,  1.5],
       [ 6.9,  3.1,  4.9,  1.5],
       [ 5.5,  2.3,  4. ,  1.3],
       [ 6.5,  2.8,  4.6,  1.5],
       [ 5.7,  2.8,  4.5,  1.3],
       [ 6.3,  3.3,  4.7,  1.6],
       [ 4.9,  2.4,  3.3,  1. ],
       [ 6.6,  2.9,  4.6,  1.3],
       [ 5.2,  2.7,  3.9,  1.4],
       [ 5. ,  2. ,  3.5,  1. ],
       [ 5.9,  3. ,  4.2,  1.5],
       [ 6. ,  2.2,  4. ,  1. ],
       [ 6.1,  2.9,  4.7,  1.4],
       [ 5.6,  2.9,  3.6,  1.3],
       [ 6.7,  3.1,  4.4,  1.4],
       [ 5.6,  3. ,  4.5,  1.5],
       [ 5.8,  2.7,  4.1,  1. ],
       [ 6.2,  2.2,  4.5,  1.5],
       [ 5.6,  2.5,  3.9,  1.1],
       [ 5.9,  3.2,  4.8,  1.8],
       [ 6.1,  2.8,  4. ,  1.3],
       [ 6.3,  2.5,  4.9,  1.5],
       [ 6.1,  2.8,  4.7,  1.2],
       [ 6.4,  2.9,  4.3,  1.3],
       [ 6.6,  3. ,  4.4,  1.4],
       [ 6.8,  2.8,  4.8,  1.4],
       [ 6.7,  3. ,  5. ,  1.7],
       [ 6. ,  2.9,  4.5,  1.5],
       [ 5.7,  2.6,  3.5,  1. ],
       [ 5.5,  2.4,  3.8,  1.1],
       [ 5.5,  2.4,  3.7,  1. ],
       [ 5.8,  2.7,  3.9,  1.2],
       [ 6. ,  2.7,  5.1,  1.6],
       [ 5.4,  3. ,  4.5,  1.5],
       [ 6. ,  3.4,  4.5,  1.6],
       [ 6.7,  3.1,  4.7,  1.5],
       [ 6.3,  2.3,  4.4,  1.3],
       [ 5.6,  3. ,  4.1,  1.3],
       [ 5.5,  2.5,  4. ,  1.3],
       [ 5.5,  2.6,  4.4,  1.2],
       [ 6.1,  3. ,  4.6,  1.4],
       [ 5.8,  2.6,  4. ,  1.2],
       [ 5. ,  2.3,  3.3,  1. ],
       [ 5.6,  2.7,  4.2,  1.3],
       [ 5.7,  3. ,  4.2,  1.2],
       [ 5.7,  2.9,  4.2,  1.3],
       [ 6.2,  2.9,  4.3,  1.3],
       [ 5.1,  2.5,  3. ,  1.1],
       [ 5.7,  2.8,  4.1,  1.3],
       [ 6.3,  3.3,  6. ,  2.5],
       [ 5.8,  2.7,  5.1,  1.9],
       [ 7.1,  3. ,  5.9,  2.1],
       [ 6.3,  2.9,  5.6,  1.8],
       [ 6.5,  3. ,  5.8,  2.2],
       [ 7.6,  3. ,  6.6,  2.1],
       [ 4.9,  2.5,  4.5,  1.7],
       [ 7.3,  2.9,  6.3,  1.8],
       [ 6.7,  2.5,  5.8,  1.8],
       [ 7.2,  3.6,  6.1,  2.5],
       [ 6.5,  3.2,  5.1,  2. ],
       [ 6.4,  2.7,  5.3,  1.9],
       [ 6.8,  3. ,  5.5,  2.1],
       [ 5.7,  2.5,  5. ,  2. ],
       [ 5.8,  2.8,  5.1,  2.4],
       [ 6.4,  3.2,  5.3,  2.3],
       [ 6.5,  3. ,  5.5,  1.8],
       [ 7.7,  3.8,  6.7,  2.2],
       [ 7.7,  2.6,  6.9,  2.3],
       [ 6. ,  2.2,  5. ,  1.5],
       [ 6.9,  3.2,  5.7,  2.3],
       [ 5.6,  2.8,  4.9,  2. ],
       [ 7.7,  2.8,  6.7,  2. ],
       [ 6.3,  2.7,  4.9,  1.8],
       [ 6.7,  3.3,  5.7,  2.1],
       [ 7.2,  3.2,  6. ,  1.8],
       [ 6.2,  2.8,  4.8,  1.8],
       [ 6.1,  3. ,  4.9,  1.8],
       [ 6.4,  2.8,  5.6,  2.1],
       [ 7.2,  3. ,  5.8,  1.6],
       [ 7.4,  2.8,  6.1,  1.9],
       [ 7.9,  3.8,  6.4,  2. ],
       [ 6.4,  2.8,  5.6,  2.2],
       [ 6.3,  2.8,  5.1,  1.5],
       [ 6.1,  2.6,  5.6,  1.4],
       [ 7.7,  3. ,  6.1,  2.3],
       [ 6.3,  3.4,  5.6,  2.4],
       [ 6.4,  3.1,  5.5,  1.8],
       [ 6. ,  3. ,  4.8,  1.8],
       [ 6.9,  3.1,  5.4,  2.1],
       [ 6.7,  3.1,  5.6,  2.4],
       [ 6.9,  3.1,  5.1,  2.3],
       [ 5.8,  2.7,  5.1,  1.9],
       [ 6.8,  3.2,  5.9,  2.3],
       [ 6.7,  3.3,  5.7,  2.5],
       [ 6.7,  3. ,  5.2,  2.3],
       [ 6.3,  2.5,  5. ,  1.9],
       [ 6.5,  3. ,  5.2,  2. ],
       [ 6.2,  3.4,  5.4,  2.3],
       [ 5.9,  3. ,  5.1,  1.8]])
# y轴,标签,训练结果
y = iris.target
y
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

模型训练

# knn训练
x = iris.data[:, 0:2] # 特征1,2
x
y = iris.target
y

clf = neighbors.KNeighborsClassifier(n_neighbors = 15)
clf.fit(x, y) # 模型训练
clf
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           metric_params=None, n_jobs=1, n_neighbors=15, p=2,
           weights='uniform')
# knn预测
z = clf.predict(iris.data[:, 0:2]) # 特征1,2
z
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2,
       1, 1, 2, 2, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 1, 1, 1,
       2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2,
       1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1])

模型验证,正确率

# 预测正确率
correct = 0
for i in range(len(iris.data)):
    if z[i] == iris.target[i]:
        correct += 1
correct
correct/len(iris.data)
0.8066666666666666

迭代优化

# knn训练
x = np.c_[iris.data[:, 2], iris.data[:, 3]] # 特征3,4
y = iris.target

clf = neighbors.KNeighborsClassifier(n_neighbors = 15)
clf.fit(x,y)
clf
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           metric_params=None, n_jobs=1, n_neighbors=15, p=2,
           weights='uniform')
#knn预测

z = clf.predict(np.c_[iris.data[:,2],iris.data[:,3]]) #特征3,4
z
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
#预测正确率

correct = 0
for i in range(len(iris.data)):
    if z[i] == iris.target[i]:
        correct += 1

correct/len(iris.data)
0.96

机器学习过程中
* 特征最重要
* 机器学习算法,次要(信息熵)
* 热力学熵,是衡量物质混乱程度的一种度量
* 信息学熵,衡量信息大小的一种度量(出人意料,与众不同),香农

目录
相关文章
|
机器学习/深度学习 存储 数据采集
数据分析案例-基于多元线性回归算法预测学生期末成绩
数据分析案例-基于多元线性回归算法预测学生期末成绩
1334 0
数据分析案例-基于多元线性回归算法预测学生期末成绩
|
4月前
|
机器学习/深度学习 算法 数据挖掘
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
本文介绍了2023年第二届钉钉杯大学生大数据挑战赛初赛A题的Python代码分析,涉及智能手机用户监测数据分析中的聚类分析和APP使用情况的分类与回归问题。
87 0
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
|
4月前
|
数据采集 自然语言处理 数据挖掘
【NLP-新闻文本分类】1 数据分析和探索
文章提供了新闻文本分类数据集的分析,包括数据预览、类型检查、缺失值分析、分布情况,指出了类别不均衡和句子长度差异等问题,并提出了预处理建议。
51 1
|
4月前
|
机器学习/深度学习 自然语言处理 数据挖掘
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案--2 数据分析
讯飞英文学术论文分类挑战赛数据集的分析,包括数据加载、缺失值检查、标签分布、文本长度统计等内容,并总结了数据的基本情况。
22 0
|
7月前
|
机器学习/深度学习 数据可视化 算法
python数据分析——在面对各种问题时,因如何做分析的分类汇总
Python数据分析是指使用Python编程语言对数据进行收集、处理、分析和可视化的过程。Python是一种非常流行的编程语言,具有简单易学、代码可读性高、生态系统强大的特点,因此在数据科学领域得到广泛应用。
201 0
|
数据挖掘
数据分析思维(四)|分类/矩阵思维
在进行数据分析工作时,我们往往会涉及到多个核心指标,而对于不同数值核心指标的结合又会产生多种不同的结果,我们将相似结果的内容放到一起进行统一决策就会大大节省数据分析的时间,这种思想我们称之为分类思维
数据分析思维(四)|分类/矩阵思维
|
供应链 数据挖掘
数据分析五大指标分类
数据分析中常见的指标分类方法
|
机器学习/深度学习 数据采集 数据可视化
【DSW Gallery】数据分析经典案例:Kaggle竞赛之房价预测
Python是目前当之无愧的数据分析第一语言,大量的数据科学家使用Python来完成各种各样的数据科学任务。本文以Kaggle竞赛中的房价预测为例,结合JupyterLab Notebook,完成数据加载、数据探索、数据可视化、数据清洗、特征分析、特征处理、机器学习、回归预测等步骤,主要Python工具是Pandas和SKLearn。本文中仅仅使用了线性回归这一最基本的机器学习模型,读者可以自行尝试其他更加复杂模型,比如随机森林、支持向量机、XGBoost等。
【DSW Gallery】数据分析经典案例:Kaggle竞赛之房价预测
|
机器学习/深度学习 算法 数据挖掘
数据分析案例-基于随机森林算法探索影响人类预期寿命的因素并预测人类预期寿命(二)
数据分析案例-基于随机森林算法探索影响人类预期寿命的因素并预测人类预期寿命
1176 2
数据分析案例-基于随机森林算法探索影响人类预期寿命的因素并预测人类预期寿命(二)
|
机器学习/深度学习 数据采集 存储
数据分析案例-基于随机森林算法探索影响人类预期寿命的因素并预测人类预期寿命(一)
数据分析案例-基于随机森林算法探索影响人类预期寿命的因素并预测人类预期寿命
1819 0
数据分析案例-基于随机森林算法探索影响人类预期寿命的因素并预测人类预期寿命(一)