神经网络

简介: 深度神经网络(DNN)神经网络是一些被称作感知机的单元的集合,感知机是二元线性分类器。如上图所示,输入 x1 和 x2 分别和各自的权重 w1 和 w2 相乘、求和,所以函数 f=x1*w1+x2*w2+b(偏置项,可以选择性地添加)。

深度神经网络(DNN)

神经网络是一些被称作感知机的单元的集合,感知机是二元线性分类器

如上图所示,输入 x1 和 x2 分别和各自的权重 w1 和 w2 相乘、求和,所以函数 f=x1*w1+x2*w2+b(偏置项,可以选择性地添加)。

函数 f 可以是任意的运算,但是对于感知机而言通常是求和。函数 f 随后会通过一个激活函数来评估,该激活函数能够实现期望分类Sigmoid 函数是用于二元分类的最常见的激活函数。

如果我们把单维度的感知机以各种组合算法聚合到一起,这就形成了网络似的全连接感知机,这些网络感知机(中间产物即隐层)的输出成为最后一个单元的输入,再通过函数 f 和激活函数得到最终的分类。

上面提到的神经网络也被称为前馈神经网络(FFNN),因为信息流是单向无环的。我们可以想象,数百个输入连接到数个这样的隐藏层会形成一个复杂的神经网络,通常被称为深度神经网络或者深度前馈神经网络(DFFNN)。

卷积神经网络(CNN)

其他的变体,如 RNN、LSTM、GRU 等,基于和 CNN 类似的结构,不过架构存在一些差异。

CNN 由三种不同的层组成,即卷积层池化层密集层或全连接层。深度神经网络是典型的全连接层神经网络。

卷积层:通过滤波器提取多个特征(滤波器是卷积)

假设一张图像有 5*5 个像素,1 代表白,0 代表黑,这幅图像被视为 5*5 的单色图像。现在用一个由随机地 0 和 1 组成的 3*3 矩阵去和图像中的子区域做乘法,每次迭代移动一个像素,这样该乘法会得到一个新的 3*3 的矩阵。

 

上述的 3*3 的矩阵被称作滤波器,它的任务是提取图像特征,它使用优化算法来决定 3*3 矩阵中具体的 0 和 1。

在神经网络的卷积层中使用好几个这样的滤波器来提取多个特征3*3 矩阵的每一个单个步骤被称作步幅(stride)。

池化层:这个层主要使用不同的函数为输入降维

最大池化层(max-pooling layer)出现在卷积层之后。池化层使用 2*2 的矩阵,以卷积层相同的方式处理图像,不过它是给图像本身降维。

池化层会损失信息通常的做法是在卷机层中使用一个较大的步幅

下面分别是使用「最大池化」和「平均池化」的示例。

全连接层:这个层是位于之前一层和激活函数之间的全连接层。

它和深度神经网络是类似的。

 

目录
相关文章
|
XML Linux 数据格式
CentOS 8 使用阿里源报404错误
CentOS 8 使用阿里源报404错误
CentOS 8 使用阿里源报404错误
|
存储 缓存 人工智能
玄铁 E906处理器简介|学习笔记
快速学习玄铁 E906处理器简介
3047 0
玄铁 E906处理器简介|学习笔记
|
10月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
545 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
4月前
|
Linux 编译器 开发工具
在CentOS环境下升级GCC编译器的指南
总结:本文提供了一种方法来升级CentOS的GCC编译器,通过使用CentOS的软件集合和开发者工具集工具,可以比较平滑地进行升级。在整个过程中无需从源代码编译,这样既省去了复杂的编译过程,也避免了可能出现的与系统库不兼容的风险。请注意,使用第三方仓库可能会带来系统稳定性和安全性上的潜在影响。所有操作都应谨慎进行,并确保有相应的数据备份。
681 19
|
弹性计算 监控 大数据
云计算中的弹性伸缩:原理与实践
云计算中的弹性伸缩:原理与实践
773 99
|
9月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
935 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
12月前
|
机器学习/深度学习 自然语言处理 数据可视化
【由浅到深】从神经网络原理、Transformer模型演进、到代码工程实现
阅读这个文章可能的收获:理解AI、看懂模型和代码、能够自己搭建模型用于实际任务。
1283 56
|
机器学习/深度学习 自然语言处理 算法
机器学习核心:监督学习与无监督学习
本文深入解析了机器学习中的监督学习与无监督学习,涵盖理论基础、应用场景及典型算法实现,如线性回归、决策树、K均值聚类和主成分分析,并通过代码示例加深理解。适合初学者和进阶者阅读。
703 5
|
应用服务中间件 nginx Docker
[loki]轻量级日志聚合系统loki快速入门
[loki]轻量级日志聚合系统loki快速入门
727 5