Google传奇Jeff Dean最新演讲:如何构建未来的机器学习芯片

简介:
本文来自AI新媒体量子位(QbitAI)

如何构建未来的机器学习加速芯片?

Google大脑负责人Jeff Dean是最有资格回答这个问题的人之一。昨天,还是在NIPS大会期间,Jeff Dean详细介绍了Google在AI芯片方面的最新研究。

ab88575f64df2331de37a239bc1abc63bf7a7370

以下是Jeff Dean最新演讲的主要内容。

众所周知,深度学习需要大量的计算资源支持,深度学习正在改变我们设计电脑的方式。例如,降低计算精度也是OK的。

Google在新机器学习方面的成果之一,就是TPU。这个专用的AI加速芯片,主要用来执行神经网络的推理计算。Google的搜索、神经机器翻译、语音图像识别,以及大名鼎鼎的AlphaGo背后,都是TPU在提供计算支持。

第一代TPU在推理方面取得了巨大的进步,但是训练怎么办?

于是Google又研发了第二代TPU。第二代TPU被设计用来同时执行训练和推理计算。第二代TPU的架构如下图所示:

3461f8f49dc36a66282d8507ec8d0897f7382411

Google还用64块TPU组成阵列(TPU Pod),这进一步提升了计算效力。具体有多厉害?例如,训练Resnet-50达到75%以上精确度,单个第二代TPU要耗时一整天,而阵列只需要22分钟,速度提升31倍,不需要任何额外代码优化。

成绩属于过去,未来挑战依然严峻。2009年以来,arXiv上机器学习论文的增长速度,已经超过摩尔定律。

0a87cad71a50242f1a58d7246e05f12c745c764e

所以,接下来要思考的问题还是:应该如何构建未来的机器学习加速器?如果现在开始着手,如何设计一个两年内能投入使用,五年内不会过时的AI芯片?

需要考虑的问题包括精度、稀疏和嵌入、Batch大小、训练算法等等。但首先是整个系统都应该有所改变。传统的low-level系统代码(操作系统、编译器、存储系统)还没有广泛利用当今的机器学习。

对于更高性能的机器学习模型来说,并行性非常重要。但是在多个计算设备上获得良好的性能,是并不是一件易事。

为什么这样?

因为Learned Index结构,不是传统的索引结构。这部分实际上是Google最新的研究成果。

在这个研究中,Google从假设现在所有的索引结构都可以用其他类型的模型来代替,包括深度学习模型,这被称为Learned Index。核心思想是,一个模型可以学习查询的排序顺序或者结构,并且利用这个信号来有效预测记录的位置。

294aa34a32cc77fc4934684b805a009982ad4e8c

Google还从理论上分析了Learned Index在哪些条件下,表现优于传统的指标结构,描述了Learned Index结构设计中的主要挑战。

初步的结果显示,在神经网络环境中,这能让经过缓存优化的B-Tree提速70%,同时节省了一个数量级的内存占用。

973e0ec3a4adff2ab6685d655d5cfc9c0e1e6412

另外,GPU/TPU让Learned Index更加可行。当然,GPU/TPU还面临高调用延迟等挑战,但是使用批量请求等技术,可以分摊调用成本。

重要的是,Google认为通过学习模型取代数据管理系统核心组件的想法,对未来的系统设计有着深远的影响。

如果对这部分研究的细节感兴趣,可以查看Google的论文The Case for Learned Index Structures,地址在此:https://arxiv.org/abs/1712.01208 。

在量子位微信公众号(QbitAI)对话界面,回复关键词“jeff”,就能下载此次Jeff Dean演讲PPT的全文。

One more thing…

Jeff Dean终于在推特上开了账号~

e484ec7bf5268a4cf0664da1509bc748acaef6dd

本文作者:允中
原文发布时间:2017-12-10
相关文章
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
539 0
|
SQL 监控 大数据
通过Google Dataflow,我们能够构建一个高效、可扩展且易于维护的实时数据处理系统
【9月更文挑战第7天】随着大数据时代的到来,企业对高效数据处理的需求日益增加,特别是在实时分析和事件驱动应用中。Google Dataflow作为Google Cloud Platform的一项服务,凭借其灵活、可扩展的特点,成为实时大数据处理的首选。本文将介绍Dataflow的基本概念、优势,并通过一个电商日志分析的实际案例和示例代码,展示如何构建高效的数据处理管道。Dataflow不仅支持自动扩展和高可用性,还提供了多种编程语言支持和与GCP其他服务的紧密集成,简化了整个数据处理流程。通过Dataflow,企业可以快速响应业务需求,优化用户体验。
399 3
|
SQL 监控 大数据
"解锁实时大数据处理新境界:Google Dataflow——构建高效、可扩展的实时数据管道实践"
【8月更文挑战第10天】随着大数据时代的发展,企业急需高效处理数据以实现即时响应。Google Dataflow作为Google Cloud Platform的强大服务,提供了一个完全托管的流处理与批处理方案。它采用Apache Beam编程模型,支持自动扩展、高可用性,并能与GCP服务无缝集成。例如,电商平台可通过Dataflow实时分析用户行为日志:首先利用Pub/Sub收集数据;接着构建管道处理并分析这些日志;最后将结果输出至BigQuery。Dataflow因此成为构建实时数据处理系统的理想选择,助力企业快速响应业务需求。
628 6
|
机器学习/深度学习 数据采集 物联网
【机器学习】Google开源大模型Gemma2:原理、微调训练及推理部署实战
【机器学习】Google开源大模型Gemma2:原理、微调训练及推理部署实战
566 0
|
人工智能 自然语言处理 机器人
[AI Google] 新的生成媒体模型和工具,专为创作者设计和构建
探索谷歌最新的生成媒体模型:用于高分辨率视频生成的 Veo 和用于卓越文本生成图像能力的 Imagen 3。还可以了解使用 Music AI Sandbox 创作的新演示录音。
[AI Google] 新的生成媒体模型和工具,专为创作者设计和构建
|
JSON 自然语言处理 Java
「微服务架构」Google和eBay在构建微服务生态系统方面的深刻教训
「微服务架构」Google和eBay在构建微服务生态系统方面的深刻教训
|
机器学习/深度学习 人工智能 自然语言处理
Jeff Dean长文展望:2021年之后,机器学习领域的五大潜力趋势(1)
Jeff Dean长文展望:2021年之后,机器学习领域的五大潜力趋势
154 0
|
机器学习/深度学习 存储 人工智能
High&NewTech:2021 年Google谷歌 I/O 开发者大会 Kemal 等三人主题演讲分享《TensorFlow 在机器学习领域的进展》
High&NewTech:2021 年Google谷歌 I/O 开发者大会 Kemal 等三人主题演讲分享《TensorFlow 在机器学习领域的进展》
High&NewTech:2021 年Google谷歌 I/O 开发者大会 Kemal 等三人主题演讲分享《TensorFlow 在机器学习领域的进展》
|
机器学习/深度学习 人工智能
AI:2020年6月24日北京智源大会演讲分享之机器学习前沿青年科学家专题论坛——10:40-11:10金驰《Near-Optimal Reinforcement Learning with Sel》
AI:2020年6月24日北京智源大会演讲分享之机器学习前沿青年科学家专题论坛——10:40-11:10金驰《Near-Optimal Reinforcement Learning with Sel》
AI:2020年6月24日北京智源大会演讲分享之机器学习前沿青年科学家专题论坛——10:40-11:10金驰《Near-Optimal Reinforcement Learning with Sel》
|
机器学习/深度学习 人工智能
AI:2020年6月24日北京智源大会演讲分享之机器学习前沿青年科学家专题论坛——10:10-10:40鬲融教授《Towards a theoretical understanding of l 》
AI:2020年6月24日北京智源大会演讲分享之机器学习前沿青年科学家专题论坛——10:10-10:40鬲融教授《Towards a theoretical understanding of l 》
AI:2020年6月24日北京智源大会演讲分享之机器学习前沿青年科学家专题论坛——10:10-10:40鬲融教授《Towards a theoretical understanding of l 》