RabbitMQ消息队列(四):分发到多Consumer(Publish/Subscribe)

简介:

 <===  RabbitMQ消息队列(三):任务分发机制     

      上篇文章中,我们把每个Message都是deliver到某个Consumer。在这篇文章中,我们将会将同一个Message deliver到多个Consumer中。这个模式也被成为 "publish / subscribe"。
    这篇文章中,我们将创建一个日志系统,它包含两个部分:第一个部分是发出log(Producer),第二个部分接收到并打印(Consumer)。 我们将构建两个Consumer,第一个将log写到物理磁盘上;第二个将log输出的屏幕。

1. Exchanges

    关于exchange的概念在《RabbitMQ消息队列(一): Detailed Introduction 详细介绍》中有详细介绍。现在做一下简单的回顾。

    RabbitMQ 的Messaging Model就是Producer并不会直接发送Message到queue。实际上,Producer并不知道它发送的Message是否已经到达queue。

   Producer发送的Message实际上是发到了Exchange中。它的功能也很简单:从Producer接收Message,然后投递到queue中。Exchange需要知道如何处理Message,是把它放到那个queue中,还是放到多个queue中?这个rule是通过Exchange 的类型定义的。


   我们知道有三种类型的Exchange:direct, topicfanout。fanout就是广播模式,会将所有的Message都放到它所知道的queue中。创建一个名字为logs,类型为fanout的Exchange:

channel.exchange_declare(exchange='logs',
                         type='fanout')

Listing exchanges

通过rabbitmqctl可以列出当前所有的Exchange:

$ sudo rabbitmqctl list_exchanges
Listing exchanges ...
logs      fanout
amq.direct      direct
amq.topic       topic
amq.fanout      fanout
amq.headers     headers
...done.

注意 amq.* exchanges 和the default (unnamed)exchange是RabbitMQ默认创建的。

现在我们可以通过exchange,而不是routing_key来publish Message了:

channel.basic_publish(exchange='logs',
                      routing_key='',
                      body=message)


2. Temporary queues

    截至现在,我们用的queue都是有名字的:第一个是hello,第二个是task_queue。使用有名字的queue,使得在Producer和Consumer之前共享queue成为可能。

    但是对于我们将要构建的日志系统,并不需要有名字的queue。我们希望得到所有的log,而不是它们中间的一部分。而且我们只对当前的log感兴趣。为了实现这个目标,我们需要两件事情:
    1) 每当Consumer连接时,我们需要一个新的,空的queue。因为我们不对老的log感兴趣。幸运的是,如果在声明queue时不指定名字,那么RabbitMQ会随机为我们选择这个名字。方法:
result = channel.queue_declare()
    通过 result.method.queue 可以取得queue的名字。基本上都是这个样子: amq.gen-JzTY20BRgKO-HjmUJj0wLg
    2)当Consumer关闭连接时,这个queue要被deleted。可以加个 exclusive的参数。方法:
result = channel.queue_declare(exclusive=True)
 
 

3. Bindings绑定

现在我们已经创建了fanout类型的exchange和没有名字的queue(实际上是RabbitMQ帮我们取了名字)。那exchange怎么样知道它的Message发送到哪个queue呢?答案就是通过bindings:绑定。

方法:

channel.queue_bind(exchange='logs',
                   queue=result.method.queue)
现在logs的exchange就将它的Message附加到我们创建的queue了。

Listing bindings

使用命令rabbitmqctl list_bindings


4. 最终版本

    我们最终实现的数据流图如下:

Producer,在这里就是产生log的program,基本上和前几个都差不多。最主要的区别就是publish通过了exchange而不是routing_key。

emit_log.py script:

#!/usr/bin/env python
import pika
import sys

connection = pika.BlockingConnection(pika.ConnectionParameters(
        host='localhost'))
channel = connection.channel()

channel.exchange_declare(exchange='logs',
                         type='fanout')

message = ' '.join(sys.argv[1:]) or "info: Hello World!"
channel.basic_publish(exchange='logs',
                      routing_key='',
                      body=message)
print " [x] Sent %r" % (message,)
connection.close()

还有一点要注意的是我们声明了exchange。publish到一个不存在的exchange是被禁止的。如果没有queue bindings exchange的话,log是被丢弃的。
Consumer:receive_logs.py:
#!/usr/bin/env python
import pika

connection = pika.BlockingConnection(pika.ConnectionParameters(
        host='localhost'))
channel = connection.channel()

channel.exchange_declare(exchange='logs',
                         type='fanout')

result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue

channel.queue_bind(exchange='logs',
                   queue=queue_name)

print ' [*] Waiting for logs. To exit press CTRL+C'

def callback(ch, method, properties, body):
    print " [x] %r" % (body,)

channel.basic_consume(callback,
                      queue=queue_name,
                      no_ack=True)

channel.start_consuming()
我们开始不是说需要两个Consumer吗?一个负责记录到文件;一个负责打印到屏幕?
其实用重定向就可以了,当然你想修改callback自己写文件也行。我们使用重定向的方法:
We're done. If you want to save logs to a file, just open a console and type:
$ python receive_logs.py > logs_from_rabbit.log
Consumer2:打印到屏幕:
$ python receive_logs.py
接下来,Producer:
$ python emit_log.py
使用命令rabbitmqctl list_bindings你可以看我们创建的queue。
一个output:
$ sudo rabbitmqctl list_bindings
Listing bindings ...
logs    exchange        amq.gen-JzTY20BRgKO-HjmUJj0wLg  queue           []
logs    exchange        amq.gen-vso0PVvyiRIL2WoV3i48Yg  queue           []
...done.
这个结果还是很好理解的。

尊重原创,转载请注明出处 anzhsoft: http://blog.csdn.net/anzhsoft/article/details/19617305

参考资料:

1. http://www.rabbitmq.com/tutorials/tutorial-three-python.html

相关实践学习
快速体验阿里云云消息队列RocketMQ版
本实验将带您快速体验使用云消息队列RocketMQ版Serverless系列实例进行获取接入点、创建Topic、创建订阅组、收发消息、查看消息轨迹和仪表盘。
消息队列 MNS 入门课程
1、消息队列MNS简介 本节课介绍消息队列的MNS的基础概念 2、消息队列MNS特性 本节课介绍消息队列的MNS的主要特性 3、MNS的最佳实践及场景应用 本节课介绍消息队列的MNS的最佳实践及场景应用案例 4、手把手系列:消息队列MNS实操讲 本节课介绍消息队列的MNS的实际操作演示 5、动手实验:基于MNS,0基础轻松构建 Web Client 本节课带您一起基于MNS,0基础轻松构建 Web Client
目录
相关文章
|
2月前
|
消息中间件 数据管理 Serverless
阿里云消息队列 Apache RocketMQ 创新论文入选顶会 ACM FSE 2025
阿里云消息团队基于 Apache RocketMQ 构建 Serverless 消息系统,适配多种主流消息协议(如 RabbitMQ、MQTT 和 Kafka),成功解决了传统中间件在可伸缩性、成本及元数据管理等方面的难题,并据此实现 ApsaraMQ 全系列产品 Serverless 化,助力企业提效降本。
|
18天前
|
消息中间件 Java Kafka
消息队列比较:Spring 微服务中的 Kafka 与 RabbitMQ
本文深入解析了 Kafka 和 RabbitMQ 两大主流消息队列在 Spring 微服务中的应用与对比。内容涵盖消息队列的基本原理、Kafka 与 RabbitMQ 的核心概念、各自优势及典型用例,并结合 Spring 生态的集成方式,帮助开发者根据实际需求选择合适的消息中间件,提升系统解耦、可扩展性与可靠性。
消息队列比较:Spring 微服务中的 Kafka 与 RabbitMQ
|
11月前
|
消息中间件 JSON Java
开发者如何使用轻量消息队列MNS
【10月更文挑战第19天】开发者如何使用轻量消息队列MNS
766 101
|
11月前
|
消息中间件 安全 Java
云消息队列RabbitMQ实践解决方案评测
一文带你详细了解云消息队列RabbitMQ实践的解决方案优与劣
278 112
|
消息中间件 C语言 RocketMQ
消息队列 MQ操作报错合集之出现"Connection reset by peer"的错误,该如何处理
消息队列(MQ)是一种用于异步通信和解耦的应用程序间消息传递的服务,广泛应用于分布式系统中。针对不同的MQ产品,如阿里云的RocketMQ、RabbitMQ等,它们在实现上述场景时可能会有不同的特性和优势,比如RocketMQ强调高吞吐量、低延迟和高可用性,适合大规模分布式系统;而RabbitMQ则以其灵活的路由规则和丰富的协议支持受到青睐。下面是一些常见的消息队列MQ产品的使用场景合集,这些场景涵盖了多种行业和业务需求。
|
10月前
|
消息中间件 存储 Kafka
MQ 消息队列核心原理,12 条最全面总结!
本文总结了消息队列的12个核心原理,涵盖消息顺序性、ACK机制、持久化及高可用性等内容。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
|
11月前
|
消息中间件
解决方案 | 云消息队列RabbitMQ实践获奖名单公布!
云消息队列RabbitMQ实践获奖名单公布!
170 1
|
11月前
|
消息中间件 存储 弹性计算
云消息队列RabbitMQ实践
云消息队列RabbitMQ实践
|
11月前
|
消息中间件 存储 监控
解决方案 | 云消息队列RabbitMQ实践
在实际业务中,网站因消息堆积和高流量脉冲导致系统故障。为解决这些问题,云消息队列 RabbitMQ 版提供高性能的消息处理和海量消息堆积能力,确保系统在流量高峰时仍能稳定运行。迁移前需进行技术能力和成本效益评估,包括功能、性能、限制值及费用等方面。迁移步骤包括元数据迁移、创建用户、网络打通和数据迁移。
272 4
|
消息中间件 运维 监控
云消息队列RabbitMQ实践解决方案评测报告
本报告旨在对《云消息队列RabbitMQ实践》解决方案进行综合评测。通过对该方案的原理理解、部署体验、设计验证以及实际应用价值等方面进行全面分析,为用户提供详尽的反馈与建议。
215 16

相关产品

  • 云消息队列 MQ