英特尔推出全新自主学习芯片加速人工智能发展

简介:

Michael C. Mayberry博士

英特尔推出全新自主学习芯片加速人工智能发展

Michael C. Mayberry博士

英特尔公司副总裁兼英特尔研究院院长

Michael C. Mayberry博士现任英特尔公司副总裁兼英特尔研究院院长,负责英特尔在计算和通信领域的全球研究工作。此外,他还领导公司研究委员会,负责推动英特尔大学定向研究项目的资源调配与优先排序。

自从1984年加入英特尔公司并担任制程集成工程师以来,Mayberry博士曾在公司的多个职位任职。作为加州技术开发团队的成员,他开发了EPROM、闪存和逻辑晶圆制造工艺。1994年,他加入晶圆测试技术开发团队,负责英特尔微处理器测试流程的路线图制定与开发工作。2005年,他进入组件研究团队,负责为英特尔的技术开发部门提供未来制程的选项。

Mayberry博士于1983年在加州大学伯克利分校获得物理化学博士学位,并于1978年在米兰德学院获得化学与数学学士学位。

想象一下——未来,我们可以更加迅速的对复杂问题做出决策并且能随时自动调整,很多社会和工业问题也都可以通过自主学习经验来自动解决。未来,一线救援人员可以通过图片识别分析街道摄像头画面,并迅速解救失踪或被绑架的人。未来,交通信号灯会根据交通流量自动调整变灯时间,控制起步停车的时间从而减少交通拥堵。未来,机器人将变得更加自主化,性能效率也都会显著提高。

随着从高度动态、非结构化自然数据中进行收集、分析和决策的需求越来越高,对计算的需求也超越了经典的CPU和GPU架构。为了跟上技术发展的步伐,并推动PC和服务器以外的计算,英特尔过去六年来一直在研究能够加快经典计算平台的专用架构。最近英特尔还加大了对人工智能(AI)和神经拟态计算的投资和研发。

我们在神经拟态计算领域的研究工作是基于几十年来的研究与合作,这项研究是由加州理工学院Carver Mead教授最先开始的,他以半导体设计的基础性工作而闻名。芯片专业知识、物理学和生物学的结合为新想法的创造提供了一个良好的环境。这些想法非常简单,却具有革命性:将机器与人脑进行比较。该研究领域将高度协作和不断支持科学的进一步发展。

作为英特尔研究院的一个研究课题,英特尔开发了代号为Loihi的第一款自主学习神经拟态芯片, 它模仿了大脑根据环境的各种反馈来学习如何操作的运作方式。这是一种非常节能的芯片,它利用数据来学习并做出推断,随着时间的推移变得更加的智能,并且不需要以传统方式进行训练。它采用一种新颖的方式通过异步脉冲来计算。

我们认为人工智能还处于初级阶段,Loihi等更多的架构和方法将不断涌现,从而提高人工智能的标准。神经拟态计算的灵感来自我们目前对大脑结构及其计算能力的了解。大脑的神经网络通过脉冲来传递信息,根据这些脉冲的时间来调节突触强度或突触连接的权重,并把这些变化存储在突触连接处。脑内神经网络及其环境中多个区域之间的协作和竞争性相互作用就产生了智能的行为。

机器学习,如深度学习,通过使用大量的训练数据集来识别物体和事件,最近取得了巨大的进步。但是,除非这些训练数据集考虑到特定的元素、条件或环境,否则这些机器学习系统不能得到很好地泛化。

自主学习芯片的潜在好处是无穷无尽的。例如它能够把一个人在各种状况下——慢跑后、吃饭前或睡觉前——的心跳数据提供给一个基于神经拟态的系统,来解析这些数据,确定各种状况下的“正常”心跳。这个系统随后持续监测传入的心跳数据,以标记出与“正常”心跳模式不相符的情况。这个系统还可以针对任何用户提供个性化服务。

这种类型的逻辑也适用于其它的应用场景,例如:网络安全,由于系统已经学习了各种状况下的“常态“模式,因此当数据流中出现异常或差异的时候,就可以识别出漏洞或黑客攻击。

英特尔推出Loihi测试芯片

Loihi研究测试芯片包括模仿大脑基本机制的数字电路,从而让机器学习变得更快、更高效,同时对计算力的需求更小。神经拟态芯片模型的灵感来自于神经元通信和学习的方式,利用了可根据时间调节的脉冲和可塑触突。这将帮助计算机在模式和关联的基础上实现自组织并做出决策。

Loihi测试芯片提供高度灵活的片上学习能力,并把训练和推断整合到一个芯片上。这让机器实现自动化,并实时进行调整,无需等待来自云端的下一次更新。研究人员已证实,与其他典型的脉冲神经网络相比,在解决MNIST数字识别问题时,以实现一定准确率所需要的总操作数来看,Loihi芯片学习速度提高了100万倍。与卷积神经网络和深度学习神经网络相比,Loihi测试芯片在同样的任务中需要的资源更少。

这种测试芯片的自主学习功能具有巨大的潜力,可以改进汽车和工业应用以及个人机器人——包括任何在非结构化环境下得益于自主操作和持续学习的应用,例如,识别汽车或自行车的运动。

此外,与训练人工智能系统的通用计算芯片相比,Loihi芯片的能效提升了1000倍。2018年上半年,英特尔将与著名大学和研究机构共享Loihi测试芯片,致力于推进人工智能。

更多亮点

Loihi测试芯片的功能特性包括:

  • 全异步神经拟态多核心网络,支持多种稀疏、分层和循环神经网络拓扑结构。每个神经元可以与成千上万个其它神经元通信。

  • 每个神经形态核心都包含一个学习引擎,在操作中可以通过编程去适配网络参数,支持监督学习、无监督学习、强化学习和其他的学习范式。

  • 芯片的制造采用了英特尔14纳米制程技术。

  • 共有13万个神经元和1.3亿个触突。

  • 以极高的算法效率开发并测试了多种算法,以解决以下问题:路径规划、约束满足、稀疏编码、字典学习,以及动态模式学习与适配。

下一步计划

在计算机和算法创新的推动下,人工智能的变革性力量预计将对社会产生重大影响。现在,英特尔正在运用自身的优势,推动摩尔定律和制造领先地位,为市场带来各种产品——英特尔®至强®处理器、英特尔® Nervana™技术、英特尔Movidius™技术和英特尔FPGAs ——以便从网络边缘到数据中心和云计算平台,来满足人工智能计算任务的独特需求。

通用计算和定制硬件和软件都能在各个尺度上充分发挥作用。英特尔®至强融核™处理器,广泛应用于科学计算,已经产生了一些世界上最大的模型,来解释大规模的科学问题。而Movidius神经计算棒则能够在只消耗1瓦特功率的情况下部署之前的训练模型。

随着人工智能计算任务变得越来越多样化和复杂,研究人员将关注当前主流计算架构的局限性,提出新的颠覆性方法。展望未来,英特尔认为,神经拟态计算带来了一种方式,以类似大脑的结构来提供超大规模的计算性能。

随着我们把神经拟态计算这样的概念推向主流,以支持未来50年的世界经济,我希望大家未来几个月继续关注来自英特尔研究院的激动人心的里程碑事件。在神经拟态计算普及的未来,随着智能和决策变得更加的顺畅、快速,你所能想象的一切——甚至超越你想象的事情——都会变成现实。

英特尔开发创新计算架构的愿景仍然坚定不移,我们之所以了解未来计算的面貌,是因为我们如今正在开发它。



本文作者:木子
本文转自雷锋网禁止二次转载, 原文链接
目录
相关文章
|
1天前
|
机器学习/深度学习 人工智能 TensorFlow
怎样学习人工智能
【6月更文挑战第27天】怎样学习人工智能。
9 4
|
5天前
|
机器学习/深度学习 人工智能 搜索推荐
智能增强:人工智能在个性化学习中的应用
【6月更文挑战第22天】随着技术的不断进步,人工智能(AI)已经渗透到教育领域,为个性化学习带来了革命性的变化。本文将探讨AI如何通过数据分析、模式识别和自适应学习路径等技术手段,实现对学生学习能力和偏好的精准把握,并据此提供定制化的学习内容和策略。文章还将分析AI在提升教育质量、促进教育公平以及预测学生表现等方面的潜力与挑战,旨在揭示AI技术如何在塑造未来教育格局中发挥关键作用。
|
4天前
|
机器学习/深度学习 人工智能 搜索推荐
人工智能在在线教育中的个性化学习推荐
人工智能在在线教育中的个性化学习推荐
10 1
|
8天前
|
人工智能 搜索推荐 安全
人工智能与未来教育:重塑学习方式的革命
【6月更文挑战第19天】随着人工智能技术的飞速发展,其在教育领域的应用正逐步深化。本文将探讨人工智能如何影响和改变传统教育模式,包括个性化学习、智能教学辅助、数据驱动的教育决策以及未来教育的发展趋势。通过分析AI技术在教育中的应用案例和潜在挑战,本文旨在为读者提供一个关于AI如何塑造未来教育环境的全面视角。
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
学习人工智能常用名词解释
人工智能是当今科技领域中备受关注的热门话题,涵盖了众多令人兴奋的技术和应用。包括机器学习、深度学习、自然语言处理、计算机视觉等众多领域的重要概念。从监督学习、无监督学习到增强学习,从卷积神经网络、循环神经网络到生成对抗网络,这些名词解释详尽地介绍了人工智能技术的基础理论和应用方法。无论你是初学者还是专业人士,这些名词解释都将为你提供一个全面的人工智能知识体系。在不断涌现的新技术和应用中,人工智能必将在未来的各个领域中扮演更为重要的角色。
9 1
|
23天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能该如何学习?
学习人工智能是一个迅速发展的领域,对于任何行业的从业者来说都是非常重要的。
30 2
|
1月前
|
机器学习/深度学习 人工智能 算法
构建未来:人工智能在持续学习系统中的进化
【5月更文挑战第24天】 本文聚焦于人工智能(AI)技术中一个关键且迅速发展的分支——持续学习系统。不同于传统的静态机器学习模型,持续学习系统能够适应新数据的到来,不断更新知识库,实现长期的累积学习。文章首先概述了持续学习的理论基础及其在现代AI领域的重要性;随后,详细探讨了该领域的最新进展,包括算法创新、神经网络架构的优化以及数据处理策略;最后,分析了持续学习面临的挑战和未来的发展方向。本研究旨在为AI专业人士提供深入见解,并激发对AI持续学习能力提升的新思路。
|
30天前
|
机器学习/深度学习 存储 人工智能
构建未来:人工智能在持续学习系统中的进化
【5月更文挑战第29天】 随着人工智能(AI)技术的蓬勃发展,机器学习模型正变得越来越复杂。然而,真正的智能不仅仅体现在完成任务的能力上,更在于不断学习和适应新环境的能力。本文将探讨如何通过创新的学习算法和系统设计,实现AI的持续学习,并分析这一进化对技术未来的意义。
|
1月前
|
机器学习/深度学习 人工智能 监控
构建未来:人工智能在持续学习系统中的进化
【5月更文挑战第28天】 随着机器学习技术的不断进步,人工智能(AI)已经从静态算法演变为具备自我更新能力的动态系统。本文探讨了AI在设计自适应学习机制方面的最新进展,重点分析了持续学习系统如何通过累积知识和优化策略来提升性能。我们审视了多个关键领域,包括神经网络架构的创新、数据效率的学习策略以及模型泛化能力的增强。此外,文章还提出了一系列挑战和未来的研究方向,旨在推动智能系统的自主学习和决策能力,以适应不断变化的环境。
|
1月前
|
机器学习/深度学习 存储 人工智能
构建未来:人工智能在持续学习系统中的进化基于人工智能的图像识别技术在自动驾驶中的应用
【5月更文挑战第27天】 在人工智能(AI)的浩瀚领域中,持续学习系统(Lifelong Learning Systems)代表着一种前沿探索,致力于模拟人类学习新任务的能力同时保留旧知识。本文深入探讨了这些系统的最新进展,包括它们如何通过深度学习、转移学习和元学习策略来优化知识存储与技能提炼。我们还将分析持续学习在现实世界应用中面临的挑战,并提出可能的解决方案,以期推动该领域的进一步发展。

热门文章

最新文章