用Python多线程实现生产者消费者模式

简介:

什么是生产者消费者模式

在软件开发的过程中,经常碰到这样的场景:

某些模块负责生产数据,这些数据由其他模块来负责处理(此处的模块可能是:函数、线程、进程等)。产生数据的模块称为生产者,而处理数据的模块称为消费者。在生产者与消费者之间的缓冲区称之为仓库。生产者负责往仓库运输商品,而消费者负责从仓库里取出商品,这就构成了生产者消费者模式。

结构图如下:

为了大家容易理解,我们举一个寄信的例子。假设你要寄一封信,大致过程如下:

你把信写好——相当于生产者生产数据

你把信放入邮箱——相当于生产者把数据放入缓冲区

邮递员把信从邮箱取出,做相应处理——相当于消费者把数据取出缓冲区,处理数据

生产者消费者模式的优点

  • 解耦

假设生产者和消费者分别是两个线程。如果让生产者直接调用消费者的某个方法,那么生产者对于消费者就会产生依赖(也就是耦合)。如果未来消费者的代码发生变化,可能会影响到生产者的代码。而如果两者都依赖于某个缓冲区,两者之间不直接依赖,耦合也就相应降低了。

举个例子,我们去邮局投递信件,如果不使用邮箱(也就是缓冲区),你必须得把信直接交给邮递员。有同学会说,直接给邮递员不是挺简单的嘛?其实不简单,你必须 得认识谁是邮递员,才能把信给他。这就产生了你和邮递员之间的依赖(相当于生产者和消费者的强耦合)。万一哪天邮递员 换人了,你还要重新认识一下(相当于消费者变化导致修改生产者代码)。而邮箱相对来说比较固定,你依赖它的成本就比较低(相当于和缓冲区之间的弱耦合)。

  • 并发

由于生产者与消费者是两个独立的并发体,他们之间是用缓冲区通信的,生产者只需要往缓冲区里丢数据,就可以继续生产下一个数据,而消费者只需要从缓冲区拿数据即可,这样就不会因为彼此的处理速度而发生阻塞。

继续上面的例子,如果我们不使用邮箱,就得在邮局等邮递员,直到他回来,把信件交给他,这期间我们啥事儿都不能干(也就是生产者阻塞)。或者邮递员得挨家挨户问,谁要寄信(相当于消费者轮询)。

  • 支持忙闲不均

当生产者制造数据快的时候,消费者来不及处理,未处理的数据可以暂时存在缓冲区中,慢慢处理掉。而不至于因为消费者的性能造成数据丢失或影响生产者生产。

我们再拿寄信的例子,假设邮递员一次只能带走1000封信,万一碰上情人节(或是圣诞节)送贺卡,需要寄出去的信超过了1000封,这时候邮箱这个缓冲区就派上用场了。邮递员把来不及带走的信暂存在邮箱中,等下次过来时再拿走。

通过上面的介绍大家应该已经明白了生产者消费者模式。

Python中的多线程编程

在实现生产者消费者模式之前,我们先学习下Python中的多线程编程。

线程是操作系统直接支持的执行单元,高级语言通常都内置多线程的支持,Python也不例外,并且Python的线程是真正的Posix Thread,而不是模拟出来的线程。

Python的标准库提供了两个模块:_thread和threading,_thread是低级模块,threading是高级模块,对_thread进行了封装。绝大多数情况下,我们只需要使用threading这个高级模块。

下面我们先看一段在Python中实现多线程的代码。


 
 
  1. import time,threading 
  2.  
  3. #线程代码 
  4.  
  5. class TaskThread(threading.Thread): 
  6.  
  7.     def __init__(self,name): 
  8.  
  9.         threading.Thread.__init__(self,name=name
  10.  
  11.     def run(self): 
  12.  
  13.         print('thread %s is running...' % self.getName()) 
  14.  
  15.   
  16.  
  17.         for i in range(6): 
  18.  
  19.             print('thread %s >>> %s' % (self.getName(), i)) 
  20.  
  21.             time.sleep(1) 
  22.  
  23.   
  24.  
  25.         print('thread %s finished.' % self.getName()) 
  26.  
  27.   
  28.  
  29. taskthread = TaskThread('TaskThread'
  30.  
  31. taskthread.start() 
  32.  
  33. taskthread.join()  

下面是程序的执行结果:


 
 
  1. thread TaskThread is running... 
  2.  
  3. thread TaskThread >>> 0 
  4.  
  5. thread TaskThread >>> 1 
  6.  
  7. thread TaskThread >>> 2 
  8.  
  9. thread TaskThread >>> 3 
  10.  
  11. thread TaskThread >>> 4 
  12.  
  13. thread TaskThread >>> 5 
  14.  
  15. thread TaskThread finished.  

TaskThread类继承自threading模块中的Thread线程类。构造函数的name参数指定线程的名字,通过重载基类run函数实现具体任务。

在简单熟悉了Python的线程后,下面我们实现一个生产者消费者模式。


 
 
  1. from Queue import Queue 
  2.  
  3. import random,threading,time 
  4.  
  5.   
  6.  
  7. #生产者类 
  8.  
  9. class Producer(threading.Thread): 
  10.  
  11.     def __init__(self, name,queue): 
  12.  
  13.         threading.Thread.__init__(self, name=name
  14.  
  15.         self.data=queue 
  16.  
  17.   
  18.  
  19.     def run(self): 
  20.  
  21.         for i in range(5): 
  22.  
  23.             print("%s is producing %d to the queue!" % (self.getName(), i)) 
  24.  
  25.             self.data.put(i) 
  26.  
  27.             time.sleep(random.randrange(10)/5) 
  28.  
  29.         print("%s finished!" % self.getName()) 
  30.  
  31.   
  32.  
  33. #消费者类 
  34.  
  35. class Consumer(threading.Thread): 
  36.  
  37.     def __init__(self,name,queue): 
  38.  
  39.         threading.Thread.__init__(self,name=name
  40.  
  41.         self.data=queue 
  42.  
  43.     def run(self): 
  44.  
  45.         for i in range(5): 
  46.  
  47.             val = self.data.get() 
  48.  
  49.             print("%s is consuming. %d in the queue is consumed!" % (self.getName(),val)) 
  50.  
  51.             time.sleep(random.randrange(10)) 
  52.  
  53.         print("%s finished!" % self.getName()) 
  54.  
  55.   
  56.  
  57. def main(): 
  58.  
  59.     queue = Queue() 
  60.  
  61.     producer = Producer('Producer',queue) 
  62.  
  63.     consumer = Consumer('Consumer',queue) 
  64.  
  65.   
  66.  
  67.     producer.start() 
  68.  
  69.     consumer.start() 
  70.  
  71.   
  72.  
  73.     producer.join() 
  74.  
  75.     consumer.join() 
  76.  
  77.     print 'All threads finished!' 
  78.  
  79.   
  80.  
  81. if __name__ == '__main__'
  82.  
  83.     main()  

执行结果可能如下:


 
 
  1. Producer is producing 0 to the queue! 
  2.  
  3. Consumer is consuming. 0 in the queue is consumed! 
  4.  
  5. Producer is producing 1 to the queue! 
  6.  
  7. Producer is producing 2 to the queue! 
  8.  
  9. Consumer is consuming. 1 in the queue is consumed! 
  10.  
  11. Consumer is consuming. 2 in the queue is consumed! 
  12.  
  13. Producer is producing 3 to the queue! 
  14.  
  15. Producer is producing 4 to the queue! 
  16.  
  17. Producer finished! 
  18.  
  19. Consumer is consuming. 3 in the queue is consumed! 
  20.  
  21. Consumer is consuming. 4 in the queue is consumed! 
  22.  
  23. Consumer finished! 
  24.  
  25. All threads finished!  

因为多线程是抢占式执行的,所以打印出的运行结果不一定和上面的完全一致。

小结

本例通过Python实现了一个简单的生产者消费者模型。Python中的Queue模块已经提供了对线程同步的支持,所以本文并没有涉及锁、同步、死锁等多线程问题。


作者:佚名

来源:51CTO

相关文章
|
1天前
|
安全 Java
Java多线程通信新解:本文通过生产者-消费者模型案例,深入解析wait()、notify()、notifyAll()方法的实用技巧
【10月更文挑战第20天】Java多线程通信新解:本文通过生产者-消费者模型案例,深入解析wait()、notify()、notifyAll()方法的实用技巧,包括避免在循环外调用wait()、优先使用notifyAll()、确保线程安全及处理InterruptedException等,帮助读者更好地掌握这些方法的应用。
7 1
|
1天前
|
数据可视化 算法 JavaScript
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
本文探讨了如何利用图论分析时间序列数据的平稳性和连通性。通过将时间序列数据转换为图结构,计算片段间的相似性,并构建连通图,可以揭示数据中的隐藏模式。文章介绍了平稳性的概念,提出了基于图的平稳性度量,并展示了图分区在可视化平稳性中的应用。此外,还模拟了不同平稳性和非平稳性程度的信号,分析了图度量的变化,为时间序列数据分析提供了新视角。
9 0
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
|
4天前
|
Python
Python中的多线程与多进程
本文将探讨Python中多线程和多进程的基本概念、使用场景以及实现方式。通过对比分析,我们将了解何时使用多线程或多进程更为合适,并提供一些实用的代码示例来帮助读者更好地理解这两种并发编程技术。
|
10天前
|
Java Python
python知识点100篇系列(16)-python中如何获取线程的返回值
【10月更文挑战第3天】本文介绍了两种在Python中实现多线程并获取返回值的方法。第一种是通过自定义线程类继承`Thread`类,重写`run`和`join`方法来实现;第二种则是利用`concurrent.futures`库,通过`ThreadPoolExecutor`管理线程池,简化了线程管理和结果获取的过程,推荐使用。示例代码展示了这两种方法的具体实现方式。
python知识点100篇系列(16)-python中如何获取线程的返回值
|
17天前
|
数据挖掘 程序员 调度
探索Python的并发编程:线程与进程的实战应用
【10月更文挑战第4天】 本文深入探讨了Python中实现并发编程的两种主要方式——线程和进程,通过对比分析它们的特点、适用场景以及在实际编程中的应用,为读者提供清晰的指导。同时,文章还介绍了一些高级并发模型如协程,并给出了性能优化的建议。
21 3
|
20天前
|
并行计算 安全 Java
Python 多线程并行执行详解
Python 多线程并行执行详解
39 3
|
2天前
|
安全 数据处理 开发者
Python中的多线程编程:从入门到精通
本文将深入探讨Python中的多线程编程,包括其基本原理、应用场景、实现方法以及常见问题和解决方案。通过本文的学习,读者将对Python多线程编程有一个全面的认识,能够在实际项目中灵活运用。
|
13天前
|
网络协议 安全 Java
难懂,误点!将多线程技术应用于Python的异步事件循环
难懂,误点!将多线程技术应用于Python的异步事件循环
43 0
|
21天前
|
设计模式 机器学习/深度学习 算法
现代 Python:编写高效代码的模式、功能和策略(第 1 部分)
现代 Python:编写高效代码的模式、功能和策略(第 1 部分)
23 0
|
21天前
|
消息中间件 NoSQL 关系型数据库
【多线程-从零开始-捌】阻塞队列,消费者生产者模型
【多线程-从零开始-捌】阻塞队列,消费者生产者模型
20 0