MongoDB 遇见 spark(进行整合)

本文涉及的产品
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
简介: 这篇文章介绍了如何将MongoDB与Spark进行整合,包括MongoDB与HDFS的比较、大数据分层架构以及整合的源码示例。

一. 与HDFS相比,MongoDB的优势

1、在存储方式上,HDFS以文件为单位,每个文件大小为 64M~128M, 而mongo则表现的更加细颗粒化;
2、MongoDB支持HDFS没有的索引概念,所以在读取速度上更快;
3、MongoDB更加容易进行修改数据;
4、HDFS响应级别为分钟,而MongoDB响应类别为毫秒;
5、可以利用MongoDB强大的 Aggregate功能进行数据筛选或预处理;
6、如果使用MongoDB,就不用像传统模式那样,到Redis内存数据库计算后,再将其另存到HDFS上。

二. 大数据的分层架构

MongoDB可以替换HDFS, 作为大数据平台中最核心的部分,可以分层如下:
第1层:MongoDB或者HDFS;
第2层:资源管理 如 YARN、Mesos、K8S;
第3层:计算引擎 如 MapReduce、Spark;
第4层:程序接口 如 Pig、Hive、Spark SQL、Spark Streaming、Data Frame等

参考:

  1. github:https://github.com/mongodb/mongo-spark

  2. mongo-python-driver: https://github.com/mongodb/mongo-python-driver/

  3. 官方文档:https://www.mongodb.com/docs/spark-connector/current/

三. 源码介绍

mongo-spark/examples/src/test/python/introduction.py

# -*- coding: UTF-8 -*-
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# To run this example use:
# ./bin/spark-submit --master "local[4]"  \
#                    --conf "spark.mongodb.input.uri=mongodb://127.0.0.1/test.coll?readPreference=primaryPreferred" \
#                    --conf "spark.mongodb.output.uri=mongodb://127.0.0.1/test.coll" \
#                    --packages org.mongodb.spark:mongo-spark-connector_2.11:2.0.0 \
#                    introduction.py
from pyspark.sql import SparkSession
if __name__ == "__main__":
    spark = SparkSession.builder.appName("Python Spark SQL basic example").getOrCreate()
    logger = spark._jvm.org.apache.log4j
    logger.LogManager.getRootLogger().setLevel(logger.Level.FATAL)
    # Save some data
    characters = spark.createDataFrame([("Bilbo Baggins",  50), ("Gandalf", 1000), ("Thorin", 195), ("Balin", 178), ("Kili", 77), ("Dwalin", 169), ("Oin", 167), ("Gloin", 158), ("Fili", 82), ("Bombur", None)], ["name", "age"])
    characters.write.format("com.mongodb.spark.sql").mode("overwrite").save()
    # print the schema
    print("Schema:")
    characters.printSchema()
    # read from MongoDB collection
    df = spark.read.format("com.mongodb.spark.sql").load()
    # SQL
    df.registerTempTable("temp")
    centenarians = spark.sql("SELECT name, age FROM temp WHERE age >= 100")
    print("Centenarians:")
    centenarians.show()
相关实践学习
MongoDB数据库入门
MongoDB数据库入门实验。
快速掌握 MongoDB 数据库
本课程主要讲解MongoDB数据库的基本知识,包括MongoDB数据库的安装、配置、服务的启动、数据的CRUD操作函数使用、MongoDB索引的使用(唯一索引、地理索引、过期索引、全文索引等)、MapReduce操作实现、用户管理、Java对MongoDB的操作支持(基于2.x驱动与3.x驱动的完全讲解)。 通过学习此课程,读者将具备MongoDB数据库的开发能力,并且能够使用MongoDB进行项目开发。   相关的阿里云产品:云数据库 MongoDB版 云数据库MongoDB版支持ReplicaSet和Sharding两种部署架构,具备安全审计,时间点备份等多项企业能力。在互联网、物联网、游戏、金融等领域被广泛采用。 云数据库MongoDB版(ApsaraDB for MongoDB)完全兼容MongoDB协议,基于飞天分布式系统和高可靠存储引擎,提供多节点高可用架构、弹性扩容、容灾、备份回滚、性能优化等解决方案。 产品详情: https://www.aliyun.com/product/mongodb
相关文章
|
分布式计算 NoSQL Java
Spark从入门到入土(三):MongoDB的集成
前面一篇中已经集成了对MongoDB的支持
Spark从入门到入土(三):MongoDB的集成
|
SQL 分布式计算 NoSQL
MongoDB Spark Connector 实战指南
Why Spark with MongoDB? 高性能,官方号称 100x faster,因为可以全内存运行,性能提升肯定是很明显的 简单易用,支持 Java、Python、Scala、SQL 等多种语言,使得构建分析应用非常简单 统一构建 ,支持多种数据源,通过 Spark RDD 屏蔽底层数据差异,同一个分析应用可运行于不同的数据源; 应用场景广泛,能同时支持批处理以及流式处理 MongoDB Spark Connector 为官方推出,用于适配 Spark 操作 MongoDB 数据;本文以 Python 为例,介绍 MongoDB Spark Connector 的使用,帮助你基于 M
597 0
|
分布式计算 NoSQL 大数据
MongoDB + Spark: 完整的大数据解决方案
转一篇文章,貌似大数据解决方案这块,MongoDB和HDFS还要较量一番。http://www.mongoing.com/tj/mongodb_shanghai_spark 其余可参考的:http://blog.
1686 0
|
16天前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
50 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
1月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
60 0
|
1月前
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
40 0
|
1月前
|
消息中间件 存储 分布式计算
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
82 0
|
18天前
|
SQL 机器学习/深度学习 分布式计算
Spark快速上手:揭秘大数据处理的高效秘密,让你轻松应对海量数据
【10月更文挑战第25天】本文全面介绍了大数据处理框架 Spark,涵盖其基本概念、安装配置、编程模型及实际应用。Spark 是一个高效的分布式计算平台,支持批处理、实时流处理、SQL 查询和机器学习等任务。通过详细的技术综述和示例代码,帮助读者快速掌握 Spark 的核心技能。
47 6
|
16天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
60 2
|
16天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
56 1