AI计算机视觉笔记三十:yolov8_obb旋转框训练

简介: 本文介绍了如何使用AUTODL环境搭建YOLOv8-obb的训练流程。首先创建虚拟环境并激活,然后通过指定清华源安装ultralytics库。接着下载YOLOv8源码,并使用指定命令开始训练,过程中可能会下载yolov8n.pt文件。训练完成后,可使用相应命令进行预测测试。

一、训练

1、环境搭建

使用的是AUTODL环境,yolov8-obb数据集不大,也可以使用cpu。
image.png

2、创建虚拟环境

# 创建虚拟环境
conda create -n yolov8_env python=3.8
# 初始化
source activate
# 激活
conda activate yolov8_env

3、下载yolov8源码

https://github.com/ultralytics/ultralytics
可以使用git克隆,也可以直接下载zip文件,拷贝进入在解压。

发现yolov8源码无法在通过源码安装了

4、安装

pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple

5、训练yolov8-obb

执行命令开始训练

yolo obb train data=dota8.yaml model=yolov8s-obb.pt epochs=500 imgsz=640 device=0

不明白,执行后,为什么会下载yolov8n.pt文件

下载很慢,可以先下载后拷贝到工程目录下

直接下载yolov8n.pt文件

https://objects.githubusercontent.com/github-production-release-asset-2e65be/521807533/661f1788-ea3e-404c-9bd6-57214dbb36fc?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=releaseassetproduction%2F20240820%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20240820T113641Z&X-Amz-Expires=300&X-Amz-Signature=5aa0e69b7a8e9aa773f028f621e6b66d0738f83a746078afcc4304035fed0bcb&X-Amz-SignedHeaders=host&actor_id=45702600&key_id=0&repo_id=521807533&response-content-disposition=attachment%3B%20filename%3Dyolov8n.pt&response-content-type=application%2Foctet-stream

等几分钟后,训练完成。

6、测试

yolo obb predict model=/root/yolov8/runs/obb/train4/weights/best.pt source=./test.jpg

image.png

相关文章
|
4月前
|
机器学习/深度学习 人工智能 算法
AI 基础知识从 0.6 到 0.7—— 彻底拆解深度神经网络训练的五大核心步骤
本文以一个经典的PyTorch手写数字识别代码示例为引子,深入剖析了简洁代码背后隐藏的深度神经网络(DNN)训练全过程。
871 56
|
2月前
|
机器学习/深度学习 人工智能 JSON
PHP从0到1实现 AI 智能体系统并且训练知识库资料
本文详解如何用PHP从0到1构建AI智能体,涵盖提示词设计、记忆管理、知识库集成与反馈优化四大核心训练维度,结合实战案例与系统架构,助你打造懂业务、会进化的专属AI助手。
236 6
|
5月前
|
机器学习/深度学习 人工智能 数据可视化
基于YOLOv8的AI虫子种类识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
本项目基于YOLOv8与PyQt5开发,实现虫子种类识别,支持图片、视频、摄像头等多种输入方式,具备完整训练与部署流程,开箱即用,附带数据集与源码,适合快速搭建高精度昆虫识别系统。
基于YOLOv8的AI虫子种类识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
|
5月前
|
机器学习/深度学习 人工智能 API
AI-Compass LLM训练框架生态:整合ms-swift、Unsloth、Megatron-LM等核心框架,涵盖全参数/PEFT训练与分布式优化
AI-Compass LLM训练框架生态:整合ms-swift、Unsloth、Megatron-LM等核心框架,涵盖全参数/PEFT训练与分布式优化
|
5月前
|
机器学习/深度学习 人工智能 资源调度
AI大模型训练管理工具:千亿参数时代的指挥中枢
本内容揭示了大模型训练中三大核心挑战:实验复现难、资源利用率低、合规风险高,并提出“三维控制塔”解决方案,涵盖实验管理、资源调度与合规追踪。推荐Immuta + 板栗看板等工具组合助力不同规模团队实现高效、合规、低成本的AI训练。
|
机器学习/深度学习 计算机视觉
AIGC核心技术——计算机视觉(CV)预训练大模型
【1月更文挑战第13天】AIGC核心技术——计算机视觉(CV)预训练大模型
1092 3
AIGC核心技术——计算机视觉(CV)预训练大模型
|
人工智能 测试技术 API
AI计算机视觉笔记二十 九:yolov10竹签模型,自动数竹签
本文介绍了如何在AutoDL平台上搭建YOLOv10环境并进行竹签检测与计数。首先从官网下载YOLOv10源码并创建虚拟环境,安装依赖库。接着通过官方模型测试环境是否正常工作。然后下载自定义数据集并配置`mycoco128.yaml`文件,使用`yolo detect train`命令或Python代码进行训练。最后,通过命令行或API调用测试训练结果,并展示竹签计数功能。如需转载,请注明原文出处。
1033 4
|
9月前
|
存储 人工智能 自然语言处理
关于计算机视觉中的自回归模型,这篇综述一网打尽了
这篇综述文章全面介绍了自回归模型在计算机视觉领域的应用和发展。文章首先概述了视觉中的序列表示和建模基础知识,随后根据表示策略将视觉自回归模型分为基于像素、标记和尺度的三类框架,并探讨其与生成模型的关系。文章详细阐述了自回归模型在图像、视频、3D及多模态生成等多方面的应用,列举了约250篇参考文献,并讨论了其在新兴领域的潜力和面临的挑战。此外,文章还建立了一个GitHub存储库以整理相关论文,促进了学术合作与知识传播。论文链接:https://arxiv.org/abs/2411.05902
303 1

热门文章

最新文章