YOLOV5应用实战项目:钢材表面缺陷检测(数据集:NEU-CLS)笔记

简介: YOLOV5应用实战项目:钢材表面缺陷检测(数据集:NEU-CLS)笔记

1. NEU-CLS数据集

下载方式:

方式一:已上传至CSDN资源,链接如下

[钢材表面缺陷检测数据集:NEU-DET 用于钢材表面的6种缺陷检测]

方式二:

关注GZH:阿旭算法与机器学习,回复:“NEU”即可获取本文数据集

2. 实战视频链接如下

【YOLOV5应用实战项目系列】教程

3.YOLOV5模型配置及训练个人笔记

  1. 准备好数据集

图片数据集与Label数据集(txt格式)。图像名称与Label名称一一对应。我已将Labelss标签处理为txt格式文件,见上面数据集中。

标签Label的格式,必须是一个txt文件,一个txt文件中可存放多个标签,文件内容格式如下:

第一个0:代表缺陷的类别信息。从0-5:分别代表6种缺陷类别。

后面四个参数分别代表矩形框的中心点X, Y, 及矩形框with,height。(注:这些都是相对于原始图像的相对位置参数

  1. 添加配置文件data.yaml

Train:代表训练集路径
 
Val:代表验证集路径
 
Nc:代表分类类别数目
 
Names:代表各个分类的名称
  1. 配置train.py文件的运行参数(pycharm中的配置方式如下

--data ./datasets/NEU-DET/data.yaml
--cfg ./models/yolov5s.yaml
--batch-size 4

Data:代表之前配置的配置文件data.yaml路径

Cfg:代表使用的yolo模型路径

Batch-size:代表每一批训练的样本数。(根据电脑配置合理设置)4,8,16,32等

参数设置好后,就可以运行train.py文件训练模型了。

4.训练结果相关说明

训练过程中,会在runs目录下生成训练的一些过程文件以及训练好的模型。

Weights:中存放的是训练好的模型;

Results:会记录每一个epoch训练完后的模型结果。

5.使用模型进行检测

模型检测使用的是detect.py文件,

  1. 配置detect.py的运行参数

--source E:\CJX_DL\YOLO_shizhan\YOLOV5\yolov5-master\datasets\NEU-DET\valid\images\
--weights E:\CJX_DL\YOLO_shizhan\YOLOV5\yolov5-master\runs\train\exp2\weights\best.pt
--save-txt
--conf 0.6

Socurce:表示所需检测的image对象路径,可以指定单个img也可以指定img目录。

Weights:表示训练好的模型路径,一般在run/train目录下:best.pt表示训练过程中效果最好的模型,last.pt表示最后一次训练出的模型。

然后就可以运行detect.py监测文件了。监测结果会默认存放到runs/detect目录下


目录
打赏
0
0
0
0
127
分享
相关文章
YOLOv5改进 | 检测头篇 | 利用DBB重参数化模块魔改检测头实现暴力涨点 (附代码 + 详细修改教程)
YOLOv5改进 | 检测头篇 | 利用DBB重参数化模块魔改检测头实现暴力涨点 (附代码 + 详细修改教程)
475 3
【超详细】【YOLOV8使用说明】一套框架解决CV的5大任务:目标检测、分割、姿势估计、跟踪和分类任务【含源码】(1)
【超详细】【YOLOV8使用说明】一套框架解决CV的5大任务:目标检测、分割、姿势估计、跟踪和分类任务【含源码】
【超详细】【YOLOV8使用说明】一套框架解决CV的5大任务:目标检测、分割、姿势估计、跟踪和分类任务【含源码】(1)
实例分割笔记(一): 使用YOLOv5-Seg对图像进行分割检测完整版(从自定义数据集到测试验证的完整流程)
本文详细介绍了使用YOLOv5-Seg模型进行图像分割的完整流程,包括图像分割的基础知识、YOLOv5-Seg模型的特点、环境搭建、数据集准备、模型训练、验证、测试以及评价指标。通过实例代码,指导读者从自定义数据集开始,直至模型的测试验证,适合深度学习领域的研究者和开发者参考。
1884 3
实例分割笔记(一): 使用YOLOv5-Seg对图像进行分割检测完整版(从自定义数据集到测试验证的完整流程)
YOLO11-pose关键点检测:训练实战篇 | 自己数据集从labelme标注到生成yolo格式的关键点数据以及训练教程
本文介绍了如何将个人数据集转换为YOLO11-pose所需的数据格式,并详细讲解了手部关键点检测的训练过程。内容涵盖数据集标注、格式转换、配置文件修改及训练参数设置,最终展示了训练结果和预测效果。适用于需要进行关键点检测的研究人员和开发者。
993 0
行为检测(一):openpose、LSTM、TSN、C3D等架构实现或者开源代码总结
这篇文章总结了包括openpose、LSTM、TSN和C3D在内的几种行为检测架构的实现方法和开源代码资源。
283 0
一种基于YOLOv8改进的高精度表面缺陷检测网络, NEU-DET和GC10-DET涨点明显(原创自研)
【7月更文挑战第3天】一种基于YOLOv8改进的高精度表面缺陷检测, 在NEU-DET和GC10-DET任务中涨点明显;
232 1
【YOLOv8改进】Inner-IoU: 基于辅助边框的IoU损失(论文笔记+引入代码)
YOLO目标检测专栏探讨了IoU损失的局限性,并提出创新改进。分析发现,不同尺度的辅助边框对高IoU和低IoU样本的回归有不同影响。因此,提出了Inner-IoU Loss,利用尺度因子ratio控制辅助边框大小以优化损失计算。实验验证了该方法能提升检测效果,增强泛化能力。创新点包括根据样本特性选择辅助边框尺度和Inner-IoU Loss的设计。更多详情见YOLO目标检测创新改进与实战案例专栏。
【超详细】【YOLOV8使用说明】一套框架解决CV的5大任务:目标检测、分割、姿势估计、跟踪和分类任务【含源码】(2)
【超详细】【YOLOV8使用说明】一套框架解决CV的5大任务:目标检测、分割、姿势估计、跟踪和分类任务【含源码】