穿越障碍:最小路径和的高效算法比较【python力扣题64】

简介: 穿越障碍:最小路径和的高效算法比较【python力扣题64】

作者介绍:10年大厂数据\经营分析经验,现任大厂数据部门负责人。

会一些的技术:数据分析、算法、SQL、大数据相关、python

欢迎加入社区:码上找工作

作者专栏每日更新:

LeetCode解锁1000题: 打怪升级之旅

python数据分析可视化:企业实战案例

备注说明:方便大家阅读,统一使用python,带必要注释,公众号 数据分析螺丝钉 一起打怪升级

题目描述

给定一个包含非负整数的 m x n 网格 grid,现在你需要找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

:每次只能向下或者向右移动一步。

输入格式
  • grid:二维数组,其中的元素表示网格中的点的值。
输出格式
  • 返回一个整数,表示所有可能路径中的最小和。

示例

示例 1
输入: grid = [
  [1,3,1],
  [1,5,1],
  [4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。
示例 2
输入: grid = [
  [1,2,3],
  [4,5,6]
]
输出: 12

方法一:动态规划

解题步骤
  1. 定义状态:创建一个同样大小的二维数组 dp,其中 dp[i][j] 表示到达点 (i, j) 的最小路径和。
  2. 初始化状态:第一行和第一列的元素只能由它的左边或上边来,所以是累加当前行或列的值。
  3. 状态转移:对于其他位置,dp[i][j] 由它的左边和上边的较小值加上当前网格值得到,即 dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j]
  4. 返回结果dp[m-1][n-1] 即为最小路径和。
完整的规范代码
def minPathSum(grid):
    """
    使用动态规划解决最小路径和问题
    :param grid: List[List[int]], 网格
    :return: int, 最小路径和
    """
    m, n = len(grid), len(grid[0])
    dp = [[0]*n for _ in range(m)]
    dp[0][0] = grid[0][0]
    for i in range(1, m):
        dp[i][0] = dp[i-1][0] + grid[i][0]
    for j in range(1, n):
        dp[0][j] = dp[0][j-1] + grid[0][j]
    for i in range(1, m):
        for j in range(1, n):
            dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j]
    return dp[m-1][n-1]
# 示例调用
print(minPathSum([
  [1,3,1],
  [1,5,1],
  [4,2,1]
]))  # 输出: 7
print(minPathSum([
  [1,2,3],
  [4,5,6]
]))  # 输出: 12
算法分析
  • 时间复杂度:(O(m * n)),需要遍历整个网格一次。
  • 空间复杂度:(O(m * n)),使用了一个同样大小的二维数组。

方法二:空间优化的动态规划

解题步骤
  1. 使用一维数组:只用一个长度为 n 的数组来保存当前行的 dp 值。
  2. 迭代更新:每次更新时,dp[j] 更新为 dp[j](从上一行继承下来的,即上方)和 dp[j-1](当前行左边的,即左方)中的较小值加上当前点的值。
完整的规范代码
def minPathSum(grid):
    """
    使用一维数组进行动态规划,空间优化版本
    :param grid: List[List[int]], 网格
    :return: int, 最小路径和
    """
    m, n = len(grid), len(grid[0])
    dp = [0] * n
    dp[0] = grid[0][0]
    for j in range(1, n):
        dp[j] = dp[j-1] + grid[0][j]
    for i in range(1, m):
        dp[0] += grid[i][0]
        for j in range(1, n):
            dp[j] = min(dp[j-1], dp[j]) + grid[i][j]
    return dp[n-1]
# 示例调用
print(minPathSum([
  [1,3,1],
  [1,5,1],
  [4,2,1]
]))  # 输出: 7
print(minPathSum([
  [1,2,3],
  [4,5,6]
]))  # 输出: 12
算法分析
  • 时间复杂度:(O(m * n)),需要遍历整个网格一次。
  • 空间复杂度:(O(n)),使用了一个长度为列数 n 的数组。

方法三:递归 + 记忆化

解题步骤
  1. 递归定义:定义一个递归函数,用于计算到达 (i, j) 的最小路径和。
  2. 记忆化存储:使用一个字典或数组来存储已经计算过的结果,避免重复计算。
完整的规范代码
def minPathSum(grid):
    """
    使用递归和记忆化搜索解决最小路径和问题
    :param grid: List[List[int]], 网格
    :return: int, 最小路径和
    """
    from functools import lru_cache
    m, n = len(grid), len(grid[0])
    @lru_cache(None)
    def dfs(i, j):
        if i == 0 and j == 0:
            return grid[i][j]
        if i < 0 or j < 0:
            return float('inf')
        return grid[i][j] + min(dfs(i-1, j), dfs(i, j-1))
    return dfs(m-1, n-1)
# 示例调用
print(minPathSum([
  [1,3,1],
  [1,5,1],
  [4,2,1]
]))  # 输出: 7
print(minPathSum([
  [1,2,3],
  [4,5,6]
]))  # 输出: 12
算法分析
  • 时间复杂度:(O(m * n)),每个点最多计算一次,利用记忆化避免重复计算。
  • 空间复杂度:(O(m * n)),记忆化需要的空间。

方法四:从终点到起点的动态规划

解题步骤
  1. 反向动态规划:从网格的右下角开始,向左上角逐步计算。
  2. 更新规则:每个点的最小路径和取决于其右边和下边的点的最小路径和。
完整的规范代码
def minPathSum(grid):
    """
    使用反向动态规划解决最小路径和问题
    :param grid: List[List[int]], 网格
    :return: int, 最小路径和
    """
    m, n = len(grid), len(grid[0])
    for i in range(m-2, -1, -1):
        grid[i][n-1] += grid[i+1][n-1]
    for j in range(n-2, -1, -1):
        grid[m-1][j] += grid[m-1][j+1]
    for i in range(m-2, -1, -1):
        for j in range(n-2, -1, -1):
            grid[i][j] += min(grid[i+1][j], grid[i][j+1])
    return grid[0][0]
# 示例调用
print(minPathSum([
  [1,3,1],
  [1,5,1],
  [4,2,1]
]))  # 输出: 7
print(minPathSum([
  [1,2,3],
  [4,5,6]
]))  # 输出: 12
算法分析
  • 时间复杂度:(O(m * n)),需要遍历整个网格一次。
  • 空间复杂度:(O(1)),直接在输入网格上进行修改,不需要额外空间。

方法五:改进的BFS

解题步骤
  1. 队列实现BFS:使用队列来实现广度优先搜索,每次处理一层。
  2. 累计最小和:使用额外的二维数组来保存到每个点的最小路径和。
  3. 优先队列优化:使用优先队列(小顶堆)来优先处理当前路径和最小的节点,以快速找到最小路径和。
完整的规范代码
from heapq import heappush, heappop
def minPathSum(grid):
    """
    使用改进的BFS和优先队列解决最小路径和问题
    :param grid: List[List[int]], 网格
    :return: int, 最小路径和
    """
    m, n = len(grid), len(grid[0])
    minHeap = [(grid[0][0], 0, 0)]  # (cost, x, y)
    costs = [[float('inf')] * n for _ in range(m)]
    costs[0][0] = grid[0][0]
    while minHeap:
        cost, x, y = heappop(minHeap)
        for dx, dy in [(1, 0), (0, 1)]:
            nx, ny = x + dx, y + dy
            if 0 <= nx < m and 0 <= ny < n:
                new_cost = cost + grid[nx][ny]
                if new_cost < costs[nx][ny]:
                    costs[nx][ny] = new_cost
                    heappush(minHeap, (new_cost, nx, ny))
    return costs[m-1][n-1]
# 示例调用
print(minPathSum([
  [1,3,1],
  [1,5,1],
  [4,2,1]
]))  # 输出: 7
print(minPathSum([
  [1,2,3],
  [4,5,6]
]))  # 输出: 12
算法分析
  • 时间复杂度:(O(m * n \log(m * n))),每个节点可能多次进入堆。
  • 空间复杂度:(O(m * n)),用于存储路径成本和堆结构。

不同算法的优劣势对比

特征 方法一: 动态规划 方法二: 空间优化DP 方法三: 递归+记忆化 方法四: 反向DP 方法五: BFS+优先队列
时间复杂度 (O(m * n)) (O(m * n)) (O(m * n)) (O(m * n)) (O(m * n \log(m * n)))
空间复杂度 (O(m * n)) (O(n)) (O(m * n)) (O(1)) (O(m * n))
优势 直观,易理解 空间效率高 避免重复计算,减少计算次数 不需要额外空间,原地修改 可以更快地找到最小路径和
劣势 空间占用高 仅限于列优化 需要辅助空间存储递归状态 修改输入数据 计算和空间复杂度较高

应用示例

机器人导航系统

在自动化仓库或智能制造系统中,机器人需要找到成本最低的路径来移动货物或执行任务。动态规划方法可以有效地计算出从起点到终点的最低成本路径,提高系统的效率和响应速度。此外,实时路径规划系统可以利用优先队列优化的BFS来快速调整路径,以应对动态变化的环境条件,如临时障碍或优先级任务。

欢迎关注微信公众号 数据分析螺丝钉

相关文章
|
12天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
150 55
|
2月前
|
数据采集 Python
Python实用记录(七):通过retinaface对CASIA-WebFace人脸数据集进行清洗,并把错误图路径放入txt文档
使用RetinaFace模型对CASIA-WebFace人脸数据集进行清洗,并将无法检测到人脸的图片路径记录到txt文档中。
48 1
|
27天前
|
搜索推荐 Python
利用Python内置函数实现的冒泡排序算法
在上述代码中,`bubble_sort` 函数接受一个列表 `arr` 作为输入。通过两层循环,外层循环控制排序的轮数,内层循环用于比较相邻的元素并进行交换。如果前一个元素大于后一个元素,就将它们交换位置。
127 67
|
27天前
|
存储 搜索推荐 Python
用 Python 实现快速排序算法。
快速排序的平均时间复杂度为$O(nlogn)$,空间复杂度为$O(logn)$。它在大多数情况下表现良好,但在某些特殊情况下可能会退化为最坏情况,时间复杂度为$O(n^2)$。你可以根据实际需求对代码进行调整和修改,或者尝试使用其他优化策略来提高快速排序的性能
120 61
|
29天前
|
算法 数据安全/隐私保护 开发者
马特赛特旋转算法:Python的随机模块背后的力量
马特赛特旋转算法是Python `random`模块的核心,由松本真和西村拓士于1997年提出。它基于线性反馈移位寄存器,具有超长周期和高维均匀性,适用于模拟、密码学等领域。Python中通过设置种子值初始化状态数组,经状态更新和输出提取生成随机数,代码简单高效。
107 63
|
21天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
120 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
2天前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
34 5
|
1天前
|
算法 容器
【算法】——双指针算法合集(力扣)
移动零,复写零,快乐数,盛最多水的容器,有效三角形的个数,和为s的两个数(查找总价格为目标值的两个商品 ),三数之和,四数之和
|
2天前
|
存储 缓存 算法
探索企业文件管理软件:Python中的哈希表算法应用
企业文件管理软件依赖哈希表实现高效的数据管理和安全保障。哈希表通过键值映射,提供平均O(1)时间复杂度的快速访问,适用于海量文件处理。在Python中,字典类型基于哈希表实现,可用于管理文件元数据、缓存机制、版本控制及快速搜索等功能,极大提升工作效率和数据安全性。
28 0
|
1月前
|
机器学习/深度学习 算法 大数据
蓄水池抽样算法详解及Python实现
蓄水池抽样是一种适用于从未知大小或大数据集中高效随机抽样的算法,确保每个元素被选中的概率相同。本文介绍其基本概念、工作原理,并提供Python代码示例,演示如何实现该算法。
35 1