【Linux】对信号产生的内核级理解

简介: 【Linux】对信号产生的内核级理解

一、键盘产生信号

      键盘产生信号这里就要涉及一个重要的概念了,叫硬件中断。我这里会粗粒度地说一下键盘产生信号,以及信号被上层软件读到的过程,只是说一下我自己的理解。

1.1、硬件中断

       硬件中断是计算机中的一种机制,它允许硬件设备在需要时向中央处理器(CPU)发送信号,以请求其关注并处理某些事件或条件。当硬件设备需要CPU的注意时,它会生成一个中断信号,该信号随后被送到CPU的中断控制器。中断控制器负责管理这些信号,并确定哪个中断需要优先处理

       一旦CPU接收到中断信号,它会暂停当前正在执行的程序保存当前的状态,如程序计数器、寄存器值等,然后跳转到特定的中断处理程序或中断服务例程来响应这个中断。中断处理程序会执行必要的操作来处理该中断,这可能包括读取硬件的状态、更新数据、发送响应等。处理完中断后,CPU会恢复之前保存的状态,并继续执行原来的程序。

1.2、键盘产生信号并被读取的过程

       在CPU上是有各个针脚的,每个针脚有对应的编号。针脚在主板上是可以和键盘进行连接的。当我们在键盘中输入命令或数据时,CPU上对应的针脚会触发高电平,CPU此时就要发生硬件中断,将CPU中正在运行的进程的数据做保存,然后去响应这个中断。CPU有寄存器能记录是几号(我觉得可以理解成数组下标)针脚触发了高电平。然后CPU就可以根据寄存器中的数字在中断向量表中找到对应数组下标中的读取键盘数据的方法。操作系统就去读取键盘上输入的数据。然后操作系统会判定键盘文件中用户输入的数据是命令还是普通的数据,如果是普通数据操作系统就直接将将数据写到键盘文件的缓冲区中,让对应的进程读到,如果是命令,操作系统就会解释成信号发送给对应的进程。

       信号发送给进程后进程PCB中其实是用一个32位的整数来保存收到的信号的,也就是说,信号是以位图的形式被保存起来的。前面我们也说过,操作系统中异步发送的信号一共有31个:

      所以用一个32位的整数就可以保存在进程的PCB中。向进程发送信号的本质是写入信号,将保存信号的位图对应的比特位由零置一,一个信号就算被发送给进程了因为发送信号要修改PCB内核数据结构的内容,所以无论产生信号的方式有多少种,最终都是由操作系统将信号写入进程PCB中的

二、出异常产生信号

2.1、除0

       在介绍出异常产生信号之前,首先要先介绍一下CPU中的部分常见寄存器,因为出异常产生信号往往都是跟CPU中的寄存器有关的。

通用寄存器

  • EAX, EBX, ECX, EDX: 32位通用寄存器,用于各种算术运算、数据操作以及地址计算。

变址寄存器和指针寄存器

  • ESI, EDI: 32位变址寄存器,常用于数组访问和字符串操作。
  • ESP, EBP: 32位堆栈指针和基指针寄存器,用于管理堆栈和访问堆栈上的数据。

指令指针寄存器

  • EIP: 32位指令指针寄存器,指向CPU下一条要执行的指令的地址。

标志寄存器

  • EFlags: 32位标志寄存器,存储关于上一条指令执行结果的状态信息,如进位、溢出、符号等。

       当我们的程序出现除0错误时,CPU中的标志寄存器(EFlags)中的溢出标志位被设置为1,CPU识别到标志寄存器中的溢出标志位被设置为1,就会转而通知操作系统,操作系统就会向正在执行的进程发送SIGFPE(8号信号)直接终止进程。

2.2、野指针

CPU中还有两个寄存器:

  1. CR2寄存器功能:CR2存放发生页错误时的虚拟地址。当CPU尝试访问一个未映射或不可访问的虚拟地址时,会触发页错误,此时CR2会保存导致错误的虚拟地址。
  2. CR3寄存器功能:CR3用于存放最高级页目录地址(物理地址)。在分页机制中,页目录是存储页面表物理地址的数据结构,而CR3则指向这个页目录的基地址。

       假设我们要修改空指针里的内容,将保存在eax寄存器中的空指针的地址(虚拟地址)和CR3寄存器中的基地址到MMU中进行映射,发现页表中根本就没有空指针的虚拟地址到物理地址之间的转换关系(或者是其它情况,有转换关系但是页表项的权限为只读权限但你却要做修改),然后将转换失败的虚拟地址存放到CR2寄存器中。CPU转而通知操作系统CR2中存在发生页错误的虚拟地址,操作系统就直接向对应进程发送SIGSEGV(11号信号),终止对应进程。

三、总结

       出现异常并发送信号一定是硬件和软件配合的结果。无论产生信号的方式有多少种,最终都是由操作系统将信号写入进程PCB中的

相关文章
|
7天前
|
Ubuntu Linux 开发者
Ubuntu20.04搭建嵌入式linux网络加载内核、设备树和根文件系统
使用上述U-Boot命令配置并启动嵌入式设备。如果配置正确,设备将通过TFTP加载内核和设备树,并通过NFS挂载根文件系统。
44 15
|
1月前
|
算法 Linux
深入探索Linux内核的内存管理机制
本文旨在为读者提供对Linux操作系统内核中内存管理机制的深入理解。通过探讨Linux内核如何高效地分配、回收和优化内存资源,我们揭示了这一复杂系统背后的原理及其对系统性能的影响。不同于常规的摘要,本文将直接进入主题,不包含背景信息或研究目的等标准部分,而是专注于技术细节和实际操作。
|
1月前
|
存储 缓存 网络协议
Linux操作系统的内核优化与性能调优####
本文深入探讨了Linux操作系统内核的优化策略与性能调优方法,旨在为系统管理员和高级用户提供一套实用的指南。通过分析内核参数调整、文件系统选择、内存管理及网络配置等关键方面,本文揭示了如何有效提升Linux系统的稳定性和运行效率。不同于常规摘要仅概述内容的做法,本摘要直接指出文章的核心价值——提供具体可行的优化措施,助力读者实现系统性能的飞跃。 ####
|
1月前
|
监控 算法 Linux
Linux内核锁机制深度剖析与实践优化####
本文作为一篇技术性文章,深入探讨了Linux操作系统内核中锁机制的工作原理、类型及其在并发控制中的应用,旨在为开发者提供关于如何有效利用这些工具来提升系统性能和稳定性的见解。不同于常规摘要的概述性质,本文将直接通过具体案例分析,展示在不同场景下选择合适的锁策略对于解决竞争条件、死锁问题的重要性,以及如何根据实际需求调整锁的粒度以达到最佳效果,为读者呈现一份实用性强的实践指南。 ####
|
1月前
|
缓存 监控 网络协议
Linux操作系统的内核优化与实践####
本文旨在探讨Linux操作系统内核的优化策略与实际应用案例,深入分析内核参数调优、编译选项配置及实时性能监控的方法。通过具体实例讲解如何根据不同应用场景调整内核设置,以提升系统性能和稳定性,为系统管理员和技术爱好者提供实用的优化指南。 ####
|
1月前
|
负载均衡 算法 Linux
深入探索Linux内核调度机制:公平与效率的平衡####
本文旨在剖析Linux操作系统内核中的进程调度机制,特别是其如何通过CFS(完全公平调度器)算法实现多任务环境下资源分配的公平性与系统响应速度之间的微妙平衡。不同于传统摘要的概览性质,本文摘要将直接聚焦于CFS的核心原理、设计目标及面临的挑战,为读者揭开Linux高效调度的秘密。 ####
37 3
|
2月前
|
负载均衡 算法 Linux
深入探索Linux内核调度器:公平与效率的平衡####
本文通过剖析Linux内核调度器的工作机制,揭示了其在多任务处理环境中如何实现时间片轮转、优先级调整及完全公平调度算法(CFS),以达到既公平又高效地分配CPU资源的目标。通过对比FIFO和RR等传统调度策略,本文展示了Linux调度器如何在复杂的计算场景下优化性能,为系统设计师和开发者提供了宝贵的设计思路。 ####
43 6
|
1月前
|
消息中间件 安全 Linux
深入探索Linux操作系统的内核机制
本文旨在为读者提供一个关于Linux操作系统内核机制的全面解析。通过探讨Linux内核的设计哲学、核心组件、以及其如何高效地管理硬件资源和系统操作,本文揭示了Linux之所以成为众多开发者和组织首选操作系统的原因。不同于常规摘要,此处我们不涉及具体代码或技术细节,而是从宏观的角度审视Linux内核的架构和功能,为对Linux感兴趣的读者提供一个高层次的理解框架。
|
2月前
|
缓存 网络协议 Linux
深入探索Linux操作系统的内核优化策略####
本文旨在探讨Linux操作系统内核的优化方法,通过分析当前主流的几种内核优化技术,结合具体案例,阐述如何有效提升系统性能与稳定性。文章首先概述了Linux内核的基本结构,随后详细解析了内核优化的必要性及常用手段,包括编译优化、内核参数调整、内存管理优化等,最后通过实例展示了这些优化技巧在实际场景中的应用效果,为读者提供了一套实用的Linux内核优化指南。 ####
54 1
|
2月前
|
算法 前端开发 Linux
深入理解Linux内核调度器:CFS与实时性的平衡####
本文旨在探讨Linux操作系统的核心组件之一——完全公平调度器(CFS)的工作原理,分析其在多任务处理环境中如何实现进程间的公平调度,并进一步讨论Linux对于实时性需求的支持策略。不同于传统摘要仅概述内容要点,本部分将简要预览CFS的设计哲学、核心算法以及它是如何通过红黑树数据结构来维护进程执行顺序,同时触及Linux内核为满足不同应用场景下的实时性要求而做出的权衡与优化。 ####