【AI大模型应用开发】【AutoGPT系列】1. 快速上手 - 运行原生AutoGPT or 利用AutoGPT框架开发自己的Agent

简介: 【AI大模型应用开发】【AutoGPT系列】1. 快速上手 - 运行原生AutoGPT or 利用AutoGPT框架开发自己的Agent
  • 大家好,我是同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:


上篇文章中,我们了解了AutoGPT的概念和原理。今天,我们来学习如何上手使用AutoGPT。

AutoGPT目前好像没有了利用 pip install 来安装python包的使用方式?

文章目录

0. 环境搭建

我是Windows系统,需要使用 wsl 进行安装,Linux或者Mac直接用命令行即可。

0.1 Windows系统安装方式

(1)将AutoGPT clone到电脑WSL系统内部某个文件夹内,而不是clone到Windows系统的某个文件夹内(这个容易失败,后面2.2为此种失败的尝试)。在某个路径文件夹下执行:

git clone https://github.com/Significant-Gravitas/AutoGPT.git

(2)进入你的本地目录

cd xxx/AutoGPT

(3)找到.env.template.文件,复制一份重命名为.env文件,将API Key和Base URL代理服务地址填上。

(4)按下面图片步骤生成GitHub的access token,并填到AutoGPT的配置文件中

  • 填表,生成token

  • 粘贴token到AutoGPT的.github_acess_token文件中

(5)配置github

git config --global user.name "Your Name"
git config --global user.email "you@example.com"

如果上面GitHub设置不成功,则会出现下面的错误:

(6)执行 ./run setup,安装成功显示如下:

0.2 失败的尝试 - 如果你失败了,可以看下是否是跟我一样的方式,帮你避坑

(1)将AutoGPT clone到电脑本地:在某个路径文件夹下执行:

git clone https://github.com/Significant-Gravitas/AutoGPT.git

(2)进入你的本地目录

cd /mnt/d/GitHub/AutoGPT_ZH

(3)找到.env.template.文件,复制一份重命名为.env文件,将API Key和Base URL代理服务地址填上。

(4)执行 ./run setup

(5)可能遇到如下错误:

解决此错误:

sudo apt update
sudo apt install dos2unix
dos2unix ./run

然后重新运行 ./run setup

(6)还有错误:

1. 运行AutoGPT

(1)在 AutoGPT/autogpts/autogpt 目录下运行AutoGPT命令:

python -m autogpt
• 1

运行成功如下:

注意运行命令的目录,如果不是在该目录下,可能会出现以下错误:

(2)运行成功输入你的需求或问题后,后面的过程需要人工干预(确认一些前置条件,如限制条件、最佳实践例子,数据来源等)

(3)确认好上面的信息后,AutoGPT才开始正式工作,思考、制定计划,根据限制条件等组织答案回复给用户。最后还需要用户干预,授权执行程序,然后才能得到最终结果。

从这个运行过程,可以看到AutoGPT是半自动化的,虽然它在ChatGPT的基础上增加了独立思考和计划行动的能力,但中间仍需要人工的干预。

并且这种方法使用的是开源AutoGPT中已有的能力。AutoGPT虽然提供了一个完整的框架和可用的全功能,但它不是一个已经把各种问题解决的很好、拿来就能用的具体工具。目前来看,它更适合用来当作一个架构,让大家在此基础上开发专门解决具体问题的Agent。下面我们来看下怎样在此架构的基础上开发属于我们自己的Agent。

2. 创建并运行你自己的Agent

(1)创建一个自己的AutoGPT

./run agent create YOUR_AUTOGPT_NAME

创建成功后,在代码目录下会出现你自定义的AutoGPT目录:

(2)运行自己的AutoGPT

./ru agent start YOUR_AUTOGPT_NAME

(3)可能遇到的报错:

  • 解决方案,命令行执行下命令:
export PATH="$HOME/.local/bin:{$PATH}"

(4)再运行,首次启动会安装一些依赖

(5)成功启动后的界面

(6)打开网址,登录GitHub授权

(7)最终界面

至此,你自己的AutoGPT环境就搭建成功了,可以在此基础上定义自己的AutoGPT逻辑了。注意,上面的仅是环境和代码框架搭建成功,虽然有界面,但是并不具备大模型应用的能力,需要自己填充逻辑。

如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


  • 大家好,我是同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:

相关文章
|
22天前
|
人工智能 并行计算 安全
从零到一,打造专属AI王国!大模型私有化部署全攻略,手把手教你搭建、优化与安全设置
【10月更文挑战第24天】本文详细介绍从零开始的大模型私有化部署流程,涵盖需求分析、环境搭建、模型准备、模型部署、性能优化和安全设置六个关键步骤,并提供相应的示例代码,确保企业能够高效、安全地将大型AI模型部署在本地或私有云上。
194 7
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
9天前
|
人工智能 自然语言处理 机器人
文档智能与RAG技术如何提升AI大模型的业务理解能力
随着人工智能的发展,AI大模型在自然语言处理中的应用日益广泛。文档智能和检索增强生成(RAG)技术的兴起,为模型更好地理解和适应特定业务场景提供了新方案。文档智能通过自动化提取和分析非结构化文档中的信息,提高工作效率和准确性。RAG结合检索机制和生成模型,利用外部知识库提高生成内容的相关性和准确性。两者的结合进一步增强了AI大模型的业务理解能力,助力企业数字化转型。
44 3
|
18天前
|
人工智能 JSON API
阿里云文档智能 & RAG解决方案:提升AI大模型业务理解与应用
阿里云推出的文档智能 & RAG解决方案,旨在通过先进的文档解析技术和检索增强生成(RAG)方法,显著提升人工智能大模型在业务场景中的应用效果。该方案通过文档智能(Document Mind)技术将非结构化文档内容转换为结构化数据,提取文档的层级树、样式和版面信息,并输出为Markdown和Json格式,为RAG提供语义分块策略。这一过程不仅解决了文档内容解析错误和切块丢失语义信息的问题,还优化了输出LLM友好的Markdown信息。方案的优势在于其多格式支持能力,能够处理包括Office文档、PDF、Html、图片在内的主流文件类型,返回文档的样式、版面信息和层级树结构。
83 2
|
10天前
|
存储 人工智能 自然语言处理
AI经营|多Agent择优生成商品标题
商品标题中关键词的好坏是商品能否被主搜检索到的关键因素,使用大模型自动优化标题成为【AI经营】中的核心能力之一,本文讲述大模型如何帮助商家优化商品素材,提升商品竞争力。
AI经营|多Agent择优生成商品标题
|
11天前
|
人工智能 弹性计算 Serverless
触手可及,函数计算玩转 AI 大模型 | 简单几步,轻松实现AI绘图
本文介绍了零售业中“人—货—场”三要素的变化,指出传统营销方式已难以吸引消费者。现代消费者更注重个性化体验,因此需要提供超出预期的内容。文章还介绍了阿里云基于函数计算的AI大模型,特别是Stable Diffusion WebUI,帮助非专业人士轻松制作高质量的促销海报。通过详细的部署步骤和实践经验,展示了该方案在实际生产环境中的应用价值。
42 6
触手可及,函数计算玩转 AI 大模型 | 简单几步,轻松实现AI绘图
|
23天前
|
存储 人工智能 数据可视化
高效率,低成本!且看阿里云AI大模型如何帮助企业提升客服质量和销售转化率
在数字化时代,企业面临海量客户对话数据处理的挑战。阿里云推出的“AI大模型助力客户对话分析”解决方案,通过先进的AI技术和智能化分析,帮助企业精准识别客户意图、发现服务质量问题,并生成详尽的分析报告和可视化数据。该方案采用按需付费模式,有效降低企业运营成本,提升客服质量和销售转化率。
高效率,低成本!且看阿里云AI大模型如何帮助企业提升客服质量和销售转化率
|
8天前
|
人工智能 新制造 芯片
2024年中国AI大模型产业发展报告解读
2024年,中国AI大模型产业迎来蓬勃发展,成为科技和经济增长的新引擎。本文解读《2024年中国AI大模型产业发展报告》,探讨产业发展背景、现状、挑战与未来趋势。技术进步显著,应用广泛,但算力瓶颈、资源消耗和训练数据不足仍是主要挑战。未来,云侧与端侧模型分化、通用与专用模型并存、大模型开源和芯片技术升级将是主要发展方向。
|
14天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
【10月更文挑战第31天】2024年,AI大模型在软件开发领域的应用取得了显著进展,从自动化代码生成、智能代码审查到智能化测试,极大地提升了开发效率和代码质量。然而,技术挑战、伦理与安全问题以及模型可解释性仍是亟待解决的关键问题。开发者需不断学习和适应,以充分利用AI的优势。
|
16天前
|
人工智能 JSON 自然语言处理
基于文档智能&RAG搭建更懂业务的AI大模型
本文介绍了一种结合文档智能和检索增强生成(RAG)技术,构建强大LLM知识库的方法。通过清洗文档内容、向量化处理和特定Prompt,提供足够的上下文信息,实现对企业级文档的智能问答。文档智能(Document Mind)能够高效解析多种文档格式,确保语义的连贯性和准确性。整个部署过程简单快捷,适合处理复杂的企业文档,提升信息提取和利用效率。
下一篇
无影云桌面