【AI的未来 - AI Agent系列】【MetaGPT】4. ActionNode从理论到实战

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: 【AI的未来 - AI Agent系列】【MetaGPT】4. ActionNode从理论到实战

0. ActionNode基础

0.1 官方解释

在MG框架0.5版本中,新增加了ActionNode类,为Agent的动作执行提供更强的能力

ActionNode可以被视为一组动作树,根据类内定义,一个动作树的父节点可以访问所有的子动作节点;也就是说,定义了一个完整的动作树之后,可以从父节点按树的结构顺序执行每一个子动作节点。因此,动作的执行也可以突破0.4版本框架中,需要在Role的_react内循环执行的限制,达到更好的CoT效果。

0.2 我的理解

如下图,ActionNode需要内置在Action中使用,之前可能是Action就是一个动作,执行完一个就执行完下一个。有了ActionNode后,Action就不只是一个动作,而可能是一系列动作。这一系列动作可以组织成链式结构,或者树状结构或者更复杂的结构。

0.3 ActionNode的数据结构

schema: str  # raw/json/markdown, default: ""
# Action Context
context: str  # all the context, including all necessary info
llm: BaseLLM  # LLM with aask interface
children: dict[str, "ActionNode"]
# Action Input
key: str  # Product Requirement / File list / Code
expected_type: Type  # such as str / int / float etc.
# context: str  # everything in the history.
instruction: str  # the instructions should be followed.
example: Any  # example for In Context-Learning.
# Action Output
content: str
instruct_content: BaseModel

其中几个重要的成员变量(以我目前浅显使用过的例子来看):

  • instruction:一般是prompt的部分内容
  • key:一般是ActionNode的名字
  • schema:指定该ActionNode的输出格式,指定为json或markdown之后会有严格的校验
  • expected_type:期望返回格式,例如str
  • example:类似prompt中的few-shot,给几个期望输出的例子

0.4 如何使用ActionNode

下面是官方教程给的例子:

# 定义单个子节点ActionNode
UI_DESIGN_DESC = ActionNode(
    key="UI Design Desc",
    expected_type=str,
    instruction="place the design objective here",
    example="Snake games are classic and addictive games with simple yet engaging elements. Here are the main elements"
    " commonly found in snake games",
)
# 定义完所有ActionNode之后,将其存放在一个List里面
NODES = [
    UI_DESIGN_DESC,
    SELECTED_ELEMENTS,
    HTML_LAYOUT,
    CSS_STYLES,
    ANYTHING_UNCLEAR,
]
# 将上述List的所有子节点传入父节点UI_DESIGN_NODE中
UI_DESIGN_NODE = ActionNode.from_children("UI_DESIGN", NODES)

从上面代码看到,使用ActionNode的步骤很简单,如下

(1)定义一系列ActionNode

(2)根据一系列ActionNode构造父ActionNode

之后,在Action.run方法中,调用父节点的执行方法fill,获取所有子节点按顺序执行之后的结果

ui_describe = await UI_DESIGN_NODE.fill(prompt)

上面我重点标出了"在Action.run方法中",说明ActionNode一定是依附在Action中运行的,在Action外不能独立运行?

1. ActionNode简单实战

上面了解了ActionNode的定义方法,以及运行fill函数,下面以一个简单的例子,实战一下。实战内容为 《MetaGPT智能体开发入门》课程中的例子:打印前10个斐波那契数列的数字,实现内容如下:

  • (1)LLM要能以特定的可解析的格式来返回斐波那契数列
  • (2)通过格式解析实现逐个打印数字的效果。

不重要:斐波那契数列是一个数列,每个数都是前两个数的和,通常以0和1开始

1.1 思考并返回特定格式的数字

将第一个实现内容(LLM要能以特定的可解析的格式来返回斐波那契数列)拆解:

  • (1)思考前10个斐波那契数列的数字是什么
  • (2)思考到的数字按特定格式输出

这就可以用两个ActionNode来实现。下面我们具体来实现。

1.1.1 定义两个ActionNode
# 将思考斐波那契数列的10个数字作为prompt输入,在这里我们将“思考需要生成的数字列表”作为命令(instruction)写入
# 将期望返回格式(expected_type)设置为str,无需设置例子(example)
SIMPLE_THINK_NODE = ActionNode(
    key="Simple Think Node",
    expected_type=str,
    instruction="""
            Think about what list of numbers you need to generate
            """,
    example=""
)
# 在这里通过命令(instruction)来规定需要生成的数字列表格式,提供例子(example)来帮助LLM理解
SIMPLE_CHECK_NODE = ActionNode(
    key="Simple CHECK Node",
    expected_type=str,
    instruction="""
            Please provide the number list for me, strictly following the following requirements:
            1. Answer strictly in the list format like [1,2,3,4]
            2. Do not have extra spaces or line breaks.
            Return the list here:
            """,
    example="[1,2,3,4]"
            "[4,5,6]",
 )
1.1.2 为这两个动作节点设置一个父节点
class THINK_NODES(ActionNode):
    def __init__(self, name="Think Nodes", expected_type=str, instruction="", example=""):
        super().__init__(key=name, expected_type=expected_type, instruction=instruction, example=example)
        self.add_children([SIMPLE_THINK_NODE, SIMPLE_CHECK_NODE])    # 初始化过程,将上面实现的两个子节点加入作为THINK_NODES类的子节点
    async def fill(self, context, llm, schema="raw", mode="auto", strgy="complex"):
        self.set_llm(llm)
        self.set_context(context)
        if self.schema:
            schema = self.schema
        if strgy == "simple":
            return await self.simple_fill(schema=schema, mode=mode)
        elif strgy == "complex":
            # 这里隐式假设了拥有children
            child_context = context    # 输入context作为第一个子节点的context
            for _, i in self.children.items():
                i.set_context(child_context)    # 为子节点设置context
                child = await i.simple_fill(schema=schema, mode=mode)
                child_context = child.content    # 将返回内容(child.content)作为下一个子节点的context
            self.content = child_context    # 最后一个子节点返回的内容设置为父节点返回内容(self.content)
            return self

为什么需要设置父节点?

  • ActionNode的 fill 方法,有一个参数叫“strgy”,当我们将这个参数设置为“complex”时,这个方法会按顺序执行每一个子节点,并将上一个子节点返回的内容作为下一个子节点的prompt。为了将两个动作节点串联起来,形成一个简单的CoT效果,我们需要设置一个父节点。
1.1.3 定义一个Action来承载上面的ActionNode

前文已经说了,ActionNode的运行需要依赖Action的动作,所以这里需要定义一个Action:

class ThinkAction(Action):
    def __init__(self, name="ThinkAction", context=None, llm=None):
        super().__init__()
        self.node = THINK_NODES()    # 初始化Action时,初始化一个THINK_NODE实例并赋值给self.node
    async def run(self, instruction) -> list:
        PROMPT = """
            You are now a number list generator, follow the instruction {instruction} and 
            generate a number list to be printed please.
            """
        prompt = PROMPT.format(instruction=instruction)
        rsp_node = await self.node.fill(context=prompt, llm=self.llm, schema="raw",
                                        strgy="complex")  # 1. 运行子节点,获取返回(返回格式为ActionNode)(注意设置 schema="raw") 2. 注意strgy为complex,表示执行所有子节点,如果是"simple", 则只会执行父节点本身
        rsp = rsp_node.content  # 获取返回的文本内容,返回的是ActionNode,通过.content来获取实际内容
        rsp_match = self.find_in_brackets(rsp)  # 按列表格式解析返回的文本内容,定位“[”与“]”之间的内容
        try:
            rsp_list = list(map(int, rsp_match[0].split(',')))  # 按列表格式解析返回的文本内容,按“,”对内容进行分割,并形成一个python语法中的列表
            return rsp_list
        except:
            return []
    @staticmethod
    def find_in_brackets(s):
        pattern = r'\[(.*?)\]'
        match = re.findall(pattern, s)
        return match

这个Action的几个重点关注点:

  • (1)初始化中self.node = THINK_NODES(),将ActionNode依附在Action中。
  • (2)Action的run方法中执行ActionNode的动作:await self.node.fill(context=prompt, llm=self.llm, schema="raw", strgy="complex")
  • 其中注意schema为"raw"
  • strgy为“complex”,表示会执行完 THINK_NODES()中的所有子节点才会返回

1.2 逐个打印数字

上面的程序将前10个数字解析出来并形成了Python中的list数组。下面实现逐个打印的Action

class SimplePrint(Action):
    input_num: int = 0
    def __init__(self, name="SimplePrint", input_num:int=0):
        super().__init__()
        self.input_num = input_num
    async def run(self):
        print(str(self.input_num) + "\n")
        return str(self.input_num)

1.3 实现Role,执行Action

有了Action,需要有个Role执行它。Role的代码和细节注释如下:

class Printer(Role):
    def __init__(self, name="TXXZ", profile="Printer", goal="Print the number", constraints=""):
        super().__init__()
        self._init_actions([ThinkAction]) ## 1. 将Action加入Role的执行列表
    async def _think(self) -> None:
        """Determine the action"""
        if self.rc.todo is None:
            self._set_state(0)
            return
        if self.rc.state + 1 < len(self.states):
            self._set_state(self.rc.state + 1)
        else:
            self.rc.todo = None
    async def _prepare_print(self, num_list:list) -> Message:
        """Add actions"""
        actions = list()
        for num in num_list: ## 2. 对于Action返回的数组,逐个添加SimplePrint动作
            actions.append(SimplePrint(input_num=num))
        self._init_actions(actions) ## 4. 这里第一个action变成了SimplePrint动作
        self.rc.todo = None ## 3. 为None时,_think函数会回到第一个action执行
        return Message(content=str(num_list))
    async def _act(self) -> Message:
        """Action"""
        todo = self.rc.todo
        if type(todo) is ThinkAction :
            msg = self.rc.memory.get(k=1)[0]
            self.goal = msg.content
            resp = await todo.run(instruction=self.goal) # 7. 个人感觉这里的goal有和没有都没关系,虽然作为prompt传入ThinkAction,但是这里并不是打印Action,与任务无关
            return await self._prepare_print(resp) ## 5. ActionNode都执行完了,返回的是个数组,逐个去添加打印Action
        resp = await todo.run() ## 6. 执行打印Action
        return Message(content=resp, role=self.profile)
    async def _react(self) -> Message:
        while True:
            await self._think()
            if self.rc.todo is None:
                break
            msg = await self._act()
        return msg

2. 完整代码和运行效果

2.1 完整代码

# 加载 .env 到环境变量
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
import asyncio
import re
from metagpt.actions.action import Action, ActionNode
from metagpt.logs import logger
from metagpt.roles import Role
from metagpt.schema import Message
# 将思考斐波那契数列的10个数字作为prompt输入,在这里我们将“思考需要生成的数字列表”作为命令(instruction)写入
# 将期望返回格式(expected_type)设置为str,无需设置例子(example)
SIMPLE_THINK_NODE = ActionNode(
    key="Simple Think Node",
    expected_type=str,
    instruction="""
            Think about what list of numbers you need to generate
            """,
    example=""
)
# 在这里通过命令(instruction)来规定需要生成的数字列表格式,提供例子(example)来帮助LLM理解
SIMPLE_CHECK_NODE = ActionNode(
    key="Simple CHECK Node",
    expected_type=str,
    instruction="""
            Please provide the number list for me, strictly following the following requirements:
            1. Answer strictly in the list format like [1,2,3,4]
            2. Do not have extra spaces or line breaks.
            Return the list here:
            """,
    example="[1,2,3,4]"
            "[4,5,6]",
 )
class THINK_NODES(ActionNode):
    def __init__(self, name="Think Nodes", expected_type=str, instruction="", example=""):
        super().__init__(key=name, expected_type=expected_type, instruction=instruction, example=example)
        self.add_children([SIMPLE_THINK_NODE, SIMPLE_CHECK_NODE])    # 初始化过程,将上面实现的两个子节点加入作为THINK_NODES类的子节点
    async def fill(self, context, llm, schema="raw", mode="auto", strgy="complex"):
        self.set_llm(llm)
        self.set_context(context)
        if self.schema:
            schema = self.schema
        if strgy == "simple":
            return await self.simple_fill(schema=schema, mode=mode)
        elif strgy == "complex":
            # 这里隐式假设了拥有children
            child_context = context    # 输入context作为第一个子节点的context
            for _, i in self.children.items():
                i.set_context(child_context)    # 为子节点设置context
                child = await i.simple_fill(schema=schema, mode=mode)
                child_context = child.content    # 将返回内容(child.content)作为下一个子节点的context
            self.content = child_context    # 最后一个子节点返回的内容设置为父节点返回内容(self.content)
            return self
class SimplePrint(Action):
    """
    Action that print the num inputted
    """
    input_num: int = 0
    def __init__(self, name="SimplePrint", input_num:int=0):
        super().__init__()
        self.input_num = input_num
    async def run(self):
        print(str(self.input_num) + "\n")
        return str(self.input_num)
class ThinkAction(Action):
    """
    Action that think
    """
    def __init__(self, name="ThinkAction", context=None, llm=None):
        super().__init__()
        self.node = THINK_NODES()    # 初始化Action时,初始化一个THINK_NODE实例并赋值给self.node
    async def run(self, instruction) -> list:
        PROMPT = """
            You are now a number list generator, follow the instruction {instruction} and 
            generate a number list to be printed please.
            """
        prompt = PROMPT.format(instruction=instruction)
        rsp_node = await self.node.fill(context=prompt, llm=self.llm, schema="raw",
                                        strgy="complex")  # 运行子节点,获取返回(返回格式为ActionNode)(注意设置 schema="raw" )
        rsp = rsp_node.content  # 获取返回的文本内容
        rsp_match = self.find_in_brackets(rsp)  # 按列表格式解析返回的文本内容,定位“[”与“]”之间的内容
        try:
            rsp_list = list(map(int, rsp_match[0].split(',')))  # 按列表格式解析返回的文本内容,按“,”对内容进行分割,并形成一个python语法中的列表
            return rsp_list
        except:
            return []
    @staticmethod
    def find_in_brackets(s):
        pattern = r'\[(.*?)\]'
        match = re.findall(pattern, s)
        return match
class Printer(Role):
    def __init__(self, name="Jerry", profile="Printer", goal="Print the number", constraints=""):
        super().__init__()
        self._init_actions([ThinkAction])
        # self.num_list = list()
    async def _think(self) -> None:
        """Determine the action"""
        # logger.info(self.rc.state)
        if self.rc.todo is None:
            self._set_state(0)
            return
        if self.rc.state + 1 < len(self.states):
            self._set_state(self.rc.state + 1)
        else:
            self.rc.todo = None
    async def _prepare_print(self, num_list:list) -> Message:
        """Add actions"""
        actions = list()
        for num in num_list:
            actions.append(SimplePrint(input_num=num))
        self._init_actions(actions)
        self.rc.todo = None
        return Message(content=str(num_list))
    async def _act(self) -> Message:
        """Action"""
        todo = self.rc.todo
        if type(todo) is ThinkAction :
            msg = self.rc.memory.get(k=1)[0]
            self.goal = msg.content
            resp = await todo.run(instruction=self.goal)
            # logger.info(resp)
            return await self._prepare_print(resp)
        resp = await todo.run()
        # logger.info(resp)
        return Message(content=resp, role=self.profile)
    async def _react(self) -> Message:
        """"""
        while True:
            await self._think()
            if self.rc.todo is None:
                break
            msg = await self._act()
        return msg
async def main():
    msg = "Provide the first 10 numbers of the Fibonacci series"
    role = Printer()
    logger.info(msg)
    result = await role.run(msg)
    logger.info(result)
if __name__ == '__main__':
    asyncio.run(main())

2.2 运行效果

本文代码是经过修改的,可以直接运行。

  • 前提:使用 MetaGPT 0.6+ 的版本,我这里用的是github最新代码(2024-01-16),源码编译的。

未完待续… 请移步下篇文章 【AI的未来 - AI Agent系列】【MetaGPT】4.1 细说我在ActionNode实战中踩的那些坑

带你绕过很多坑!

相关文章
|
11天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
12月14日,由中国软件行业校园招聘与实习公共服务平台携手魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·湖南大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
|
2天前
|
机器学习/深度学习 人工智能 算法
FinRobot:开源的金融专业 AI Agent,提供市场预测、报告分析和交易策略等金融解决方案
FinRobot 是一个开源的 AI Agent 平台,专注于金融领域的应用,通过大型语言模型(LLMs)构建复杂的金融分析和决策工具,提供市场预测、文档分析和交易策略等多种功能。
42 13
FinRobot:开源的金融专业 AI Agent,提供市场预测、报告分析和交易策略等金融解决方案
|
4天前
|
人工智能 开发框架 算法
Qwen-Agent:阿里通义开源 AI Agent 应用开发框架,支持构建多智能体,具备自动记忆上下文等能力
Qwen-Agent 是阿里通义开源的一个基于 Qwen 模型的 Agent 应用开发框架,支持指令遵循、工具使用、规划和记忆能力,适用于构建复杂的智能代理应用。
59 10
Qwen-Agent:阿里通义开源 AI Agent 应用开发框架,支持构建多智能体,具备自动记忆上下文等能力
|
22天前
|
机器学习/深度学习 人工智能 自然语言处理
Gemini 2.0:谷歌推出的原生多模态输入输出 + Agent 为核心的 AI 模型
谷歌最新推出的Gemini 2.0是一款原生多模态输入输出的AI模型,以Agent技术为核心,支持多种数据类型的输入与输出,具备强大的性能和多语言音频输出能力。本文将详细介绍Gemini 2.0的主要功能、技术原理及其在多个领域的应用场景。
130 20
Gemini 2.0:谷歌推出的原生多模态输入输出 + Agent 为核心的 AI 模型
|
8天前
|
存储 人工智能 人机交互
PC Agent:开源 AI 电脑智能体,自动收集人机交互数据,模拟认知过程实现办公自动化
PC Agent 是上海交通大学与 GAIR 实验室联合推出的智能 AI 系统,能够模拟人类认知过程,自动化执行复杂的数字任务,如组织研究材料、起草报告等,展现了卓越的数据效率和实际应用潜力。
78 1
PC Agent:开源 AI 电脑智能体,自动收集人机交互数据,模拟认知过程实现办公自动化
|
22天前
|
人工智能 API 语音技术
TEN Agent:开源的实时多模态 AI 代理框架,支持语音、文本和图像的实时通信交互
TEN Agent 是一个开源的实时多模态 AI 代理框架,集成了 OpenAI Realtime API 和 RTC 技术,支持语音、文本和图像的多模态交互,具备实时通信、模块化设计和多语言支持等功能,适用于智能客服、实时语音助手等多种场景。
123 15
TEN Agent:开源的实时多模态 AI 代理框架,支持语音、文本和图像的实时通信交互
|
4天前
|
人工智能 自然语言处理 前端开发
三大行业案例:AI大模型+Agent实践全景
本文将从AI Agent和大模型的发展背景切入,结合51Talk、哈啰出行以及B站三个各具特色的行业案例,带你一窥事件驱动架构、RAG技术、人机协作流程,以及一整套行之有效的实操方法。具体包含内容有:51Talk如何让智能客服“主动进攻”,带来约课率、出席率双提升;哈啰出行如何由Copilot模式升级为Agent模式,并应用到客服、营销策略生成等多个业务场景;B站又是如何借力大模型与RAG方法,引爆了平台的高效内容检索和强互动用户体验。
70 5
|
1天前
|
存储 人工智能 开发框架
Eliza:TypeScript 版开源 AI Agent 开发框架,快速搭建智能、个性的 Agents 系统
Eliza 是一个开源的多代理模拟框架,支持多平台连接、多模型集成,能够快速构建智能、高效的AI系统。
24 8
Eliza:TypeScript 版开源 AI Agent 开发框架,快速搭建智能、个性的 Agents 系统
|
25天前
|
人工智能 自然语言处理 算法
AI时代的企业内训全景图:从案例到实战
作为一名扎根在HR培训领域多年的“老兵”,我越来越清晰地感受到,企业内训的本质其实是为企业持续“造血”。无论是基础岗的新人培训、技能岗的操作规范培训,还是面向技术中坚力量的高阶技术研讨,抑或是管理层的战略思维提升课,内训的价值都是在帮助企业内部提升能力水平,进而提高组织生产力,减少对外部资源的依赖。更为重要的是,在当前AI、大模型、Embodied Intelligence等新兴技术快速迭代的背景下,企业必须不断为人才升级赋能,才能在市场竞争中保持领先。
|
10天前
|
人工智能 安全 图形学
【AI落地应用实战】篡改检测技术前沿探索——从基于检测分割到大模型
在数字化洪流席卷全球的当下,视觉内容已成为信息交流与传播的核心媒介,然而,随着PS技术和AIGC技术的飞速发展,图像篡改给视觉内容安全带来了前所未有的挑战。 本文将探讨篡改检测技术的现实挑战,分享篡改检测技术前沿和最新应用成果。