机器学习第10天:集成学习

简介: 机器学习第10天:集成学习



机器学习专栏

机器学习_Nowl的博客

介绍

集成学习的思想是很直观的:多个人判断的结合往往比一个人的想法好

我们将在下面介绍几种常见的集成学习思想与方法

投票分类器

介绍

假如我们有一个分类任务,我们训练了多个模型:逻辑回归模型,SVM分类器,决策树分类器,然后我们看他们预测的结果,如果两个分类器预测为1,一个分类器预测为0,那么最后模型判断为1,采用的是一种少数服从多数的思想


代码

核心代码

引入投票分类器库,并创建模型

from sklearn.ensemble import VotingClassifier
 
 
log_model = LogisticRegression()
tree_model = DecisionTreeClassifier()
svc_model = SVC()
 
voting_model = VotingClassifier(
    estimators=[('lr', log_model), ('df', tree_model), ('sf', svc_model)],
    voting='hard'
)
 
voting_model.fit(x, y)

例子中创建了三个基础分类器,最后再组合成一个投票分类器

示例代码

我们在鸢尾花数据集上测试不同模型的分类效果

from sklearn.ensemble import VotingClassifier
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import load_iris
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
 
 
iris = load_iris()
X = iris.data  # petal length and width
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
 
log_model = LogisticRegression()
tree_model = DecisionTreeClassifier()
svc_model = SVC()
 
voting_model = VotingClassifier(
    estimators=[('lr', log_model), ('df', tree_model), ('sf', svc_model)],
    voting='hard'
)
 
for model in (log_model, tree_model, svc_model, voting_model):
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    print(model, accuracy_score(y_test, y_pred))

运行结果

该示例代码可以看到各个模型在相同数据集上的性能测试,该示例的数据集较小,所以性能相差不大,当数据集增大时 ,集成学习的性能往往比单个模型更优


软投票与硬投票

当基本模型可以计算每个类的概率时,集成学习将概率进行平均计算得出结果,这种方法被称作软投票,当基本模型只能输出类别时,只能实行硬投票(以预测次数多的为最终结果)

bagging与pasting

介绍

除了投票分类这种集成方法,我们还有其他方法,例如:使用相同的基础分类器,但是每个分类器训练的样本将从数据集中随机抽取,最后再结合性能,若抽取样本放回,则叫做bagging方法,若不放回,则叫做pasting方法


核心代码

from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier
 
 
model = BaggingClassifier(
    DecisionTreeClassifier(), n_estimators=500,
    max_samples=100, bootstrap=True, n_jobs=-1
)
 
model.fit(X_train, y_train)

若基本分类器可以计算每个类的概率,BaggingClassifier自动执行软分类方法

bootstrap = True设置模型采用Bagging放回采样法

n_jobs参数代表用多少CPU内核进行训练何预测(-1代表使用所有可用内核)

设置为False时采用Pasting不放回采样法


随机森林

介绍

随机森林就是一种基本模型是决策树的Bagging方法,你可以使用BaggingClassifier集成DecisionTreeClassifier,也可以使用现成的库


代码

from sklearn.ensemble import RandomForestClassifier
 
 
model = RandomForestClassifier(n_estimators=100, max_leaf_nodes=16, n_jobs=-1)
model.fit(X_train, y_train)

max_leaf_nodes限制了子分类器的最大叶子节点数量


结语

集成学习就是利用了一个很基本的思想:多数人的想法往往比一个人的想法更优,同时概率论中也有这样一个场景:实验次数越多,概率越接近本质

感谢阅读,觉得有用的话就订阅下本专栏吧

相关文章
|
1天前
|
机器学习/深度学习 监控 算法
【机器学习】提供学习率的直观解释
【5月更文挑战第18天】【机器学习】提供学习率的直观解释
|
6天前
|
机器学习/深度学习
机器学习 —— 分类预测与集成学习(下)
机器学习 —— 分类预测与集成学习(下)
20 0
|
6天前
|
机器学习/深度学习 数据采集 数据可视化
机器学习 —— 分类预测与集成学习(上)
机器学习 —— 分类预测与集成学习
24 2
|
6天前
|
机器学习/深度学习 监控 算法
LabVIEW使用机器学习分类模型探索基于技能课程的学习
LabVIEW使用机器学习分类模型探索基于技能课程的学习
12 1
|
6天前
|
机器学习/深度学习 传感器 物联网
【Python机器学习专栏】机器学习在物联网(IoT)中的集成
【4月更文挑战第30天】本文探讨了机器学习在物联网(IoT)中的应用,包括数据收集预处理、实时分析决策和模型训练更新。机器学习被用于智能家居、工业自动化和健康监测等领域,例如预测居民行为以优化能源效率和设备维护。Python是支持物联网项目机器学习集成的重要工具,文中给出了一个使用`scikit-learn`预测温度的简单示例。尽管面临数据隐私、安全性和模型解释性等挑战,但物联网与机器学习的结合将持续推动各行业的创新和智能化。
|
6天前
|
机器学习/深度学习 分布式计算 物联网
【Python机器学习专栏】联邦学习:保护隐私的机器学习新趋势
【4月更文挑战第30天】联邦学习是保障数据隐私的分布式机器学习方法,允许设备在本地训练数据并仅共享模型,保护用户隐私。其优势包括数据隐私、分布式计算和模型泛化。应用于医疗、金融和物联网等领域,未来将发展更高效的数据隐私保护、提升可解释性和可靠性的,并与其他技术融合,为机器学习带来新机遇。
|
6天前
|
机器学习/深度学习 自然语言处理 搜索推荐
【Python机器学习专栏】迁移学习在机器学习中的应用
【4月更文挑战第30天】迁移学习是利用已有知识解决新问题的机器学习方法,尤其在数据稀缺或资源有限时展现优势。本文介绍了迁移学习的基本概念,包括源域和目标域,并探讨了其在图像识别、自然语言处理和推荐系统的应用。在Python中,可使用Keras或TensorFlow实现迁移学习,如示例所示,通过预训练的VGG16模型进行图像识别。迁移学习提高了学习效率和性能,随着技术发展,其应用前景广阔。
|
6天前
|
机器学习/深度学习 Python
【Python 机器学习专栏】堆叠(Stacking)集成策略详解
【4月更文挑战第30天】堆叠(Stacking)是机器学习中的集成学习策略,通过多层模型组合提升预测性能。该方法包含基础学习器和元学习器两个阶段:基础学习器使用多种模型(如决策树、SVM、神经网络)学习并产生预测;元学习器则利用这些预测结果作为新特征进行学习,生成最终预测。在Python中实现堆叠集成,需划分数据集、训练基础模型、构建新训练集、训练元学习器。堆叠集成的优势在于提高性能和灵活性,但可能增加计算复杂度和过拟合风险。
|
6天前
|
机器学习/深度学习 数据采集 自然语言处理
理解并应用机器学习算法:神经网络深度解析
【5月更文挑战第15天】本文深入解析了神经网络的基本原理和关键组成,包括神经元、层、权重、偏置及损失函数。介绍了神经网络在图像识别、NLP等领域的应用,并涵盖了从数据预处理、选择网络结构到训练与评估的实践流程。理解并掌握这些知识,有助于更好地运用神经网络解决实际问题。随着技术发展,神经网络未来潜力无限。
|
1天前
|
人工智能 编解码 算法
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
在本教程中,您将学习在阿里云交互式建模平台PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理,实现文本驱动的图像编辑功能单卡即可完成AIGC图片风格变化、背景变化和主体变化等功能。让我们一同开启这场旅程,为您的图像编辑添上无限可能性的翅膀吧。

热门文章

最新文章