深度优先搜索(DFS、深搜)和广度优先搜索(BFS、广搜)(中)

简介: 深度优先搜索(DFS、深搜)和广度优先搜索(BFS、广搜)

深度优先搜索(DFS、深搜)和广度优先搜索(BFS、广搜)(上):https://developer.aliyun.com/article/1471373


深度优先生成树和广度优先生成树


其实在对无向图进行遍历的时候,遍历过程中所经历过的图中的顶点和边的组合,就是图的生成树或者生成森林。

image.png

图 1 无向图


12485367


例如,图 1 中的无向图是由 V1~V7 的顶点和编号分别为 a~i 的边组成。当使用深度优先搜索算法时,假设 V1 作为遍历的起始点,涉及到的顶点和边的遍历顺序为(不唯一):

image.png

此种遍历顺序构建的生成树为:

image.png

12485367


图 2 深度优先生成树

由深度优先搜索得到的树为深度优先生成树。同理 广度优先搜索生成的树为广度优先生成树,图 1 无向图以顶点 V1 为起始点进行广度优先搜索遍历得到的树,如图 3 所示:

image.png

图 3 广度优先生成树


连通图的生成森林


非连通图在进行遍历时,实则是对非连通图中每个连通分量分别进行遍历,在遍历过程经过的每个顶点和边,就构成了每个连通分量的生成树。


非连通图中,多个连通分量构成的多个生成树为非连通图的生成森林。


深度优先生成森林


选择小的数字作为开头;

image.png

图 4 深度优先生成森林


例如,对图 4 中的非连通图 (a) 采用深度优先搜索算法遍历时,得到的深度优先生成森林(由 3 个深度优先生成树构成)如 (b) 所示(不唯一)。


非连通图在遍历生成森林时,可以采用孩子兄弟表示法将森林转化为一整棵二叉树进行存储。

具体实现的代码:

#include <stdio.h>
#include <stdlib.h>
#define MAX_VERtEX_NUM 20 //顶点的最大个数
#define VRType int //表示顶点之间的关系的变量类型
#define VertexType int //图中顶点的数据类型
typedef enum{false,true}bool; //定义bool型常量
bool visited[MAX_VERtEX_NUM]; //设置全局数组,记录标记顶点是否被访问过
typedef struct {
VRType adj; //对于无权图,用 1 或 0 表示是否相邻;对于带权图,直接为权值。
}ArcCell,AdjMatrix[MAX_VERtEX_NUM][MAX_VERtEX_NUM];
typedef struct {
VertexType vexs[MAX_VERtEX_NUM]; //存储图中顶点数据
AdjMatrix arcs; //二维数组,记录顶点之间的关系
int vexnum,arcnum; //记录图的顶点数和弧(边)数
}MGraph;
//孩子兄弟表示法的链表结点结构
typedef struct CSNode{
VertexType data;
struct CSNode * lchild;//孩子结点
struct CSNode * nextsibling;//兄弟结点
}*CSTree,CSNode;
//根据顶点本身数据,判断出顶点在二维数组中的位置
int LocateVex(MGraph G,VertexType v){
int i=0;
//遍历一维数组,找到变量v
for (; i<G.vexnum; i++) {
if (G.vexs[i]==v) {
break;
}
}
//如果找不到,输出提示语句,返回-1
if (i>G.vexnum) {
printf("no such vertex.\n");
return -1;
}
return i;
}
//构造无向图
void CreateDN(MGraph *G){
scanf("%d,%d",&(G->vexnum),&(G->arcnum));
getchar();
for (int i=0; i<G->vexnum; i++) {
scanf("%d",&(G->vexs[i]));
}
for (int i=0; i<G->vexnum; i++) {
for (int j=0; j<G->vexnum; j++) {
G->arcs[i][j].adj=0;
}
}
for (int i=0; i<G->arcnum; i++) {
int v1,v2;
scanf("%d,%d",&v1,&v2);
int n=LocateVex(*G, v1);
int m=LocateVex(*G, v2);
if (m==-1 ||n==-1) {
printf("no this vertex\n");
return;
}
G->arcs[n][m].adj=1;
G->arcs[m][n].adj=1;//无向图的二阶矩阵沿主对角线对称
}
}
int FirstAdjVex(MGraph G,int v)
{
//查找与数组下标为v的顶点之间有边的顶点,返回它在数组中的下标
for(int i = 0; i<G.vexnum; i++){
if( G.arcs[v][i].adj ){
return i;
}
}
return -1;
}
int NextAdjVex(MGraph G,int v,int w)
{
//从前一个访问位置w的下一个位置开始,查找之间有边的顶点
for(int i = w+1; i<G.vexnum; i++){
if(G.arcs[v][i].adj){
return i;
}
}
return -1;
}
void DFSTree(MGraph G,int v,CSTree*T){
//将正在访问的该顶点的标志位设为true
visited[v]=true;
bool first=true;
CSTree q=NULL;
//依次遍历该顶点的所有邻接点
for (int w=FirstAdjVex(G, v); w>=0; w=NextAdjVex(G, v, w)) {
//如果该临界点标志位为false,说明还未访问
if (!visited[w]) {
//为该邻接点初始化为结点
CSTree p=(CSTree)malloc(sizeof(CSNode));
p->data=G.vexs[w];
p->lchild=NULL;
p->nextsibling=NULL;
//该结点的第一个邻接点作为孩子结点,其它邻接点作为孩子结点的兄弟结点
if (first) {
(*T)->lchild=p;
first=false;
}
//否则,为兄弟结点
else{
q->nextsibling=p;
}
q=p;
//以当前访问的顶点为树根,继续访问其邻接点
DFSTree(G, w, &q);
}
}
}
//深度优先搜索生成森林并转化为二叉树
void DFSForest(MGraph G,CSTree *T){
(*T)=NULL;
//每个顶点的标记为初始化为false
for (int v=0; v<G.vexnum; v++) {
visited[v]=false;
}
CSTree q=NULL;
//遍历每个顶点作为初始点,建立深度优先生成树
for (int v=0; v<G.vexnum; v++) {
//如果该顶点的标记位为false,证明未访问过
if (!(visited[v])) {
//新建一个结点,表示该顶点
CSTree p=(CSTree)malloc(sizeof(CSNode));
p->data=G.vexs[v];
p->lchild=NULL;
p->nextsibling=NULL;
//如果树未空,则该顶点作为树的树根
if (!(*T)) {
(*T)=p;
}
//该顶点作为树根的兄弟结点
else{
q->nextsibling=p;
}
//每次都要把q指针指向新的结点,为下次添加结点做铺垫
q=p;
//以该结点为起始点,构建深度优先生成树
DFSTree(G,v,&p);
}
}
}
//前序遍历二叉树
void PreOrderTraverse(CSTree T){
if (T) {
printf("%d ",T->data);
PreOrderTraverse(T->lchild);
PreOrderTraverse(T->nextsibling);
}
return;
}
int main() {
MGraph G;//建立一个图的变量
CreateDN(&G);//初始化图
CSTree T;
DFSForest(G, &T);
PreOrderTraverse(T);
return 0;
}

运行程序,拿图 4(a)中的非连通图为例,构建的深度优先生成森林,使用孩子兄弟表示法表示为:

image.png

图5 孩子兄弟表示法表示深度优先生成森林


图中,3 种颜色的树各代表一棵深度优先生成树,使用孩子兄弟表示法表示,也就是将三棵树的树根相连,第一棵树的树根作为整棵树的树根。


运行结果

13,13

1

2

3

4

5

6

7

8

9

10

11

12

13

1,2

1,3

1,6

1,12

2,13

4,5

7,8

7,10

7,9

8,10

11,12

11,13

12,13

1 2 13 11 12 3 6 4 5 7 8 10 9


深度优先搜索(DFS、深搜)和广度优先搜索(BFS、广搜)(下):


相关文章
|
人工智能
《Zarya of the Dawn》的尴尬遭遇及美国版权局的应对
《Zarya of the Dawn》的尴尬遭遇及美国版权局的应对
830 3
《Zarya of the Dawn》的尴尬遭遇及美国版权局的应对
|
9月前
|
机器学习/深度学习 传感器 监控
机器学习:强化学习中的探索策略全解析
在机器学习的广阔领域中,强化学习(Reinforcement Learning, RL)无疑是一个充满魅力的子领域。它通过智能体与环境的交互,学习如何在特定的任务中做出最优决策。然而,在这个过程中,探索(exploration)和利用(exploitation)的平衡成为了智能体成功的关键。本文将深入探讨强化学习中的探索策略,包括其重要性、常用方法以及代码示例来论证这些策略的效果。
|
机器学习/深度学习
神经网络与深度学习---验证集(测试集)准确率高于训练集准确率的原因
本文分析了神经网络中验证集(测试集)准确率高于训练集准确率的四个可能原因,包括数据集大小和分布不均、模型正则化过度、批处理后准确率计算时机不同,以及训练集预处理过度导致分布变化。
|
运维 监控 Java
Java微服务中的事务管理与一致性
Java微服务中的事务管理与一致性
|
算法
串ababaaababaa的next和串ababaabab的nextval
本文介绍了计算字符串的next数组和nextval数组的方法,通过分析两个具体的例子来展示如何计算这些数组,这些数组通常用于KMP算法中。
782 0
串ababaaababaa的next和串ababaabab的nextval
|
数据安全/隐私保护
课5-隐私求交和隐语PSI介绍及开发实践
Alice和Bob分别创建了CSV文件`alice_psi_input.csv`和`bob_psi_input.csv`,包含姓名和年龄数据。他们使用SecretFlow库执行隐私保护集合求交(PSI)协议,版本v1和v2,通过ECDH_PSI_2PC或PROTOCOL_ECDH协议,不泄露原始数据。在PSI过程中,双方找出共享的姓名,结果发送给Alice。
|
机器学习/深度学习 人工智能 自然语言处理
|
Python
在python中使用SimpleImputer类(来自scikit-learn库)
在python中使用SimpleImputer类(来自scikit-learn库)
863 46
|
文字识别 并行计算 JavaScript
PaddleOCR + Django 实现一个OCR在线识别网站,一起来玩呀
除了PaddleOCR之外,之前还介绍过一些其它好玩的开源项目,例如老照片修复 Bringing-Old-Photos-Back-to-Life 、黑白照片上色DeOldify 。因此,最近准备启动一个项目,做一个在线网站,将之前一些好玩的功能都陆续集成在这个网站中
PaddleOCR + Django 实现一个OCR在线识别网站,一起来玩呀