一体化模型图像去雨+图像去噪+图像去模糊(图像处理-图像复原-代码+部署运行教程)

简介: 一体化模型图像去雨+图像去噪+图像去模糊(图像处理-图像复原-代码+部署运行教程)

本文主要讲述了一体化模型进行去噪、去雨、去模糊,也就是说,一个模型就可以完成上述三个任务。实现了良好的图像复原功能!

先来看一下美女复原.jpg


具体的:


  • 在图像恢复任务中,需要在恢复图像的过程中保持空间细节和高级上下文信息之间的复杂平衡。
  • 在这篇论文中,我们提出了一种新颖的协同设计,可以在这些竞争目标之间实现最佳平衡。我们的主要提议是一个多阶段架构,逐步学习对退化输入进行恢复的函数,从而将整个恢复过程分解为更可管理的步骤。
  • 具体而言,我们的模型首先使用编码器-解码器架构学习上下文特征,然后与保留局部信息的高分辨率分支相结合。
  • 在每个阶段,我们引入一种新颖的逐像素自适应设计,利用原位监督注意力来重新加权局部特征。这种多阶段架构的一个关键组成部分是不同阶段之间的信息交流。
  • 为此,我们提出了一种双重方法,在信息不仅从早期到晚期阶段顺序交换的同时,还存在特征处理块之间的侧向连接,以避免任何信息损失。
  • 结果紧密关联的多阶段架构,在包括图像去雨、去模糊和去噪等多个任务的十个数据集上实现了强大的性能提升。


去噪结果

该论文提出的方法在图像恢复任务中引入了一个多阶段架构,可以有效平衡空间细节和上下文信息。其核心思想是逐步学习破损输入的恢复函数,并通过多个阶段的信息交流来实现更好的恢复效果。

去模糊结果

具体而言,该方法使用编码器-解码器架构学习上下文特征,并将其与保留局部信息的高分辨率分支相结合。

去雨对比结果

在每个阶段,它还引入了一种新颖的自适应设计,通过利用原位监督注意力对局部特征进行重新加权。此外,该方法还使用了早期到晚期阶段的顺序信息交流和侧向连接来避免信息损失。

代码部署

要部署和运行该论文的代码,您可以按照以下步骤进行:

1.获取代码:首先,您需要从论文作者的代码存储库或其他公开来源获取代码。

git clone my_code 联系我----->qq1309399183

2.环境设置:确保您的计算机上已安装所需的软件和库。根据代码要求,您可能需要安装Python、PyTorch、NumPy等。

conda create -n pytorch1 python=3.7
conda activate pytorch1
conda install pytorch=1.1 torchvision=0.3 cudatoolkit=9.0 -c pytorch
pip install matplotlib scikit-image opencv-python yacs joblib natsort h5py tqdm
cd pytorch-gradual-warmup-lr; python setup.py install; cd ..

3.数据准备:准备用于图像恢复任务的数据集。根据您的需求,您可以选择合适的数据集,并确保按照代码的要求组织数据。
点击代码中的链接获取!


4.模型训练:使用提供的代码,您可以使用准备好的数据集对模型进行训练。根据代码的具体实现,您可能需要指定模型架构、训练参数和优化器等。

python train.py


5.模型测试:在训练完成后,您可以使用训练得到的模型对新的图像进行恢复。根据代码的实现,您可能需要提供待恢复图像的路径或其他必要的输入

python demo.py --task Task_Name --input_dir path_to_images --result_dir save_images_here
touch me:qq---->1309399183
相关文章
|
机器学习/深度学习 传感器 自动驾驶
狂风暴雨依旧YOLO | 全新数据集,全新任务,促进极端降雨条件下目标检测的优化和发展
狂风暴雨依旧YOLO | 全新数据集,全新任务,促进极端降雨条件下目标检测的优化和发展
690 0
|
机器学习/深度学习 传感器 编解码
Real-ESRGAN超分辨网络
Real-ESRGAN超分辨网络
898 1
|
自然语言处理
PubMedBERT:生物医学自然语言处理领域的特定预训练模型
今年大语言模型的快速发展导致像BERT这样的模型都可以称作“小”模型了。Kaggle LLM比赛LLM Science Exam 的第四名就只用了deberta,这可以说是一个非常好的成绩了。所以说在特定的领域或者需求中,大语言模型并不一定就是最优的解决方案,“小”模型也有一定的用武之地,所以今天我们来介绍PubMedBERT,它使用特定领域语料库从头开始预训练BERT,这是微软研究院2022年发布在ACM的论文。
532 1
Layui 内置方法 - layer.msg(提示框)
Layui 内置方法 - layer.msg(提示框)
1196 0
|
3月前
|
机器学习/深度学习 人工智能 自动驾驶
7种交通场景数据集(千张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
在智能交通与自动驾驶技术快速发展的今天,如何高效、准确地感知道路环境已经成为研究与应用的核心问题。车辆、行人和交通信号灯作为城市交通系统的关键元素,对道路安全与交通效率具有直接影响。然而,真实道路场景往往伴随 复杂光照、遮挡、多目标混杂以及交通信号状态多样化 等挑战,使得视觉识别与检测任务难度显著增加。
|
5月前
|
XML API 开发者
主流电商亚马逊api数据接口实操
本文详细介绍了亚马逊 API 的实操指南,涵盖 MWS 和 SP-API 的基本使用方法、认证流程及代码示例。内容包括:1) 亚马逊 API 概述,对比 MWS 和 SP-API 的功能与适用场景;2) 注册开发者账号并获取凭证的步骤;3) 使用 Python 调用 MWS 订单 API 和 SP-API 产品信息 API 的示例代码;4) API 调用注意事项,如速率限制、认证机制和错误处理;5) 推荐工具和资源,帮助开发者高效集成和优化代码实现。建议先在沙箱环境测试,确保生产环境稳定运行。
|
11月前
|
编解码 人工智能 监控
VISION XL:支持四倍超分辨率的 AI 视频修复处理工具,提供去除模糊、修复缺失等功能
VISION XL是一款基于潜在扩散模型的高效视频修复和超分辨率工具,能够修复视频缺失部分、去除模糊,并支持四倍超分辨率。该工具优化了处理效率,适合快速处理视频的应用场景。
2778 6
VISION XL:支持四倍超分辨率的 AI 视频修复处理工具,提供去除模糊、修复缺失等功能
|
机器学习/深度学习 算法 计算机视觉
深度学习之图像修复算法
基于深度学习的图像修复算法旨在通过学习和生成模型来填补图像中的缺失或损坏部分。
655 7
|
机器学习/深度学习 文字识别 自然语言处理
文档图像处理:大模型的突破与新探索
丁凯博士分享了当前文档图像处理面临的困难,并讨论大模型在该领域的突破和新探索。
1494 5
|
机器学习/深度学习 编解码 达摩院
【OpenVI-图像超分实战篇】别用GAN做超分了,快来试试基于扩散模型的图像超分吧!
近10年来,深度学习技术得到了长足进步,在图像增强领域取得了显著的成果,尤其是以GAN为代表的生成式模型在图像复原、老片修复,图像超分辨率等方面大放异彩。图像超分辨率是视频增强方面,用于提升画质的典型应用。生成对抗网络GAN使得在图像分辨率增加的同时,保持细节特征,补充生成真实的纹理,其中应用广泛的工作是Real-ESRGAN。 扩散模型DiffusionModel在图像超分辨率这方面的新的应用,展现出其超过GAN的生成多样性和真实性。看完后,你会发现,还在用GAN做图像超分辨率吗?已经OUT了,快来试试DiffusionModel吧!
28743 3
【OpenVI-图像超分实战篇】别用GAN做超分了,快来试试基于扩散模型的图像超分吧!