从2开始,在Go语言后端业务系统中引入缓存

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 从2开始,在Go语言后端业务系统中引入缓存

本次我们接着上两篇文章进行讲解《从0开始,用Go语言搭建一个简单的后端业务系统》《从1开始,扩展Go语言后端业务系统的RPC功能》,如题,需求就是为了应对查询时的高qps,我们引入Redis缓存,让查询数据时不直接将请求发送到数据库,而是先通过一层缓存来抵挡qps,下面我们开始今天的分享:

1 逻辑设计

如图,本次缓存设计的逻辑就是在查询时首先查询缓存,如果查询不到则查询数据库(实际中不建议,会发生缓存穿透),在增删改时会先改数据库,再改缓存。

2 代码

2.1 项目结构

2.2 下载依赖
go get github.com/go-redis/redis/v8
2.3 具体代码和配置

配置:

package config
import (
   "fmt"
   "github.com/go-redis/redis/v8"
   "github.com/spf13/viper"
)
var RDB *redis.Client
func init() {
   var err error
   viper.SetConfigName("app")
   viper.SetConfigType("properties")
   viper.AddConfigPath("./")
   err = viper.ReadInConfig()
   if err != nil {
      panic(fmt.Errorf("Fatal error config file: %w \n", err))
   }
   if err := viper.ReadInConfig(); err != nil {
      if _, ok := err.(viper.ConfigFileNotFoundError); ok {
         fmt.Println("No file ...")
      } else {
         fmt.Println("Find file but have err ...")
      }
   }
   add := viper.GetString("redis.url")
   pwd := viper.GetString("redis.password")
   db := viper.GetInt("redis.db")
   RDB = redis.NewClient(&redis.Options{
      Addr:     add,
      Password: pwd,
      DB:       db,
   })
}

Cache层:

package cache
import (
   "context"
   "count_num/pkg/config"
   "count_num/pkg/entity"
   "encoding/json"
   "github.com/go-redis/redis/v8"
   "time"
)
type CountNumCacheDAOImpl struct {
   db *redis.Client
}
type CountNumCacheDAO interface {
   // set一个
   SetNumInfo(ctx context.Context, key string, info entity.NumInfo, t time.Duration) bool
   // 根据ID获取一个
   GetNumInfoById(ctx context.Context, key string) entity.NumInfo
}
func NewCountNumCacheDAOImpl() *CountNumCacheDAOImpl {
   return &CountNumCacheDAOImpl{db: config.RDB}
}
func (impl CountNumCacheDAOImpl) SetNumInfo(ctx context.Context, key string, info entity.NumInfo, t time.Duration) bool {
   res := impl.db.Set(ctx, key, info, t)
   result, _ := res.Result()
   if result != "OK" {
      return false
   }
   return true
}
func (impl CountNumCacheDAOImpl) GetNumInfoById(ctx context.Context, key string) entity.NumInfo {
   res := impl.db.Get(ctx, key)
   var info entity.NumInfo
   j := res.Val()
   json.Unmarshal([]byte(j), &info)
   return info
}

DAO层实现类:

package impl
import (
   "context"
   "count_num/pkg/cache"
   "count_num/pkg/config"
   "count_num/pkg/entity"
   "fmt"
   "gorm.io/gorm"
   "time"
)
var cacheTime = time.Second * 3600
type CountNumDAOImpl struct {
   db    *gorm.DB
   cache *cache.CountNumCacheDAOImpl
}
func NewCountNumDAOImpl() *CountNumDAOImpl {
   return &CountNumDAOImpl{db: config.DB, cache: cache.NewCountNumCacheDAOImpl()}
}
func (impl CountNumDAOImpl) AddNumInfo(ctx context.Context, info entity.NumInfo) bool {
   var in entity.NumInfo
   impl.db.First(&in, "info_key", info.InfoKey)
   if in.InfoKey == info.InfoKey { //去重
      return false
   }
   impl.db.Save(&info) //要使用指针,Id可以回显
   impl.cache.SetNumInfo(ctx, string(info.Id), info, cacheTime)
   return true
}
func (impl CountNumDAOImpl) GetNumInfoByKey(ctx context.Context, key string) entity.NumInfo {
   var info entity.NumInfo
   impl.db.First(&info, "info_key", key)
   return info
}
func (impl CountNumDAOImpl) FindAllNumInfo(ctx context.Context) []entity.NumInfo {
   var infos []entity.NumInfo
   impl.db.Find(&infos)
   return infos
}
func (impl CountNumDAOImpl) UpdateNumInfoByKey(ctx context.Context, info entity.NumInfo) bool {
   impl.db.Model(&entity.NumInfo{}).Where("info_key = ?", info.InfoKey).Update("info_num", info.InfoNum)
   return true
}
func (impl CountNumDAOImpl) DeleteNumInfoById(ctx context.Context, id int64) bool {
   impl.db.Delete(&entity.NumInfo{}, id)
   impl.cache.SetNumInfo(ctx, string(info.Id), "", cacheTime)
   return true
}
func (impl CountNumDAOImpl) GetNumInfoById(ctx context.Context, id int64) entity.NumInfo {
   var info entity.NumInfo
   numInfoById := impl.cache.GetNumInfoById(ctx, string(id))
   if numInfoById.InfoKey != "" {
      return numInfoById
   }
   impl.db.First(&info, "id", id)
   return info
}
func (impl CountNumDAOImpl) UpdateNumInfoById(ctx context.Context, info entity.NumInfo) bool {
   impl.db.Model(&entity.NumInfo{}).Where("id", info.Id).Updates(entity.NumInfo{Name: info.Name, InfoKey: info.InfoKey, InfoNum: info.InfoNum})
   impl.cache.SetNumInfo(ctx, string(info.Id), info, cacheTime)
   return true
}

实体类:

package entity
import "encoding/json"
type NumInfo struct {
   Id      int64  `json:"id"`
   Name    string `json:"name"`
   InfoKey string `json:"info_key"`
   InfoNum int64  `json:"info_num"`
}
func (stu NumInfo) TableName() string {
   return "num_info"
}
func (info NumInfo) MarshalJSON() ([]byte, error) {
   return json.Marshal(map[string]interface{}{
      "id":       info.Id,
      "name":     info.Name,
      "info_key": info.InfoKey,
      "info_num": info.InfoNum,
   })
}
//Redis类似序列化操作
func (info NumInfo) MarshalBinary() ([]byte, error) {
   return json.Marshal(info)
}
func (info NumInfo) UnmarshalBinary(data []byte) error {
   return json.Unmarshal(data, &info)
}

配置文件:

server.port=9888
server.rpc.port=6666
db.driver=mysql
db.url=127.0.0.1:3306
db.databases=test
db.username=root
db.password=12345
redis.url=127.0.0.1:6379
redis.db=1
redis.password=

3 遇见问题及解决

出现问题,根据提示我们大约能理解是Go语言中结构体类似序列化的问题:

解决—结构体实现接口:

//Redis类似序列化操作
func (info NumInfo) MarshalBinary() ([]byte, error) {
   return json.Marshal(info)
}
func (info NumInfo) UnmarshalBinary(data []byte) error {
   return json.Unmarshal(data, &info)
}

4 总结

引入Redis缓存是后端业务中应对高并发查询比较常见的一个做法,在软件工程学中有一句话叫做:计算机的所有问题都可以用加一层来解决。

在本次项目中可以说缓存设计的相对简单,针对Key的查询并没有增加缓存,当然也是为了方便演示。

今天的分享就到这里。

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
22天前
|
存储 Go 索引
go语言中数组和切片
go语言中数组和切片
36 7
|
22天前
|
Go 开发工具
百炼-千问模型通过openai接口构建assistant 等 go语言
由于阿里百炼平台通义千问大模型没有完善的go语言兼容openapi示例,并且官方答复assistant是不兼容openapi sdk的。 实际使用中发现是能够支持的,所以自己写了一个demo test示例,给大家做一个参考。
|
10天前
|
存储 缓存 监控
Linux缓存管理:如何安全地清理系统缓存
在Linux系统中,内存管理至关重要。本文详细介绍了如何安全地清理系统缓存,特别是通过使用`/proc/sys/vm/drop_caches`接口。内容包括清理缓存的原因、步骤、注意事项和最佳实践,帮助你在必要时优化系统性能。
128 78
|
22天前
|
程序员 Go
go语言中结构体(Struct)
go语言中结构体(Struct)
97 71
|
21天前
|
存储 Go 索引
go语言中的数组(Array)
go语言中的数组(Array)
102 67
|
24天前
|
Go 索引
go语言for遍历数组或切片
go语言for遍历数组或切片
93 62
|
2天前
|
存储 监控 算法
员工上网行为监控中的Go语言算法:布隆过滤器的应用
在信息化高速发展的时代,企业上网行为监管至关重要。布隆过滤器作为一种高效、节省空间的概率性数据结构,适用于大规模URL查询与匹配,是实现精准上网行为管理的理想选择。本文探讨了布隆过滤器的原理及其优缺点,并展示了如何使用Go语言实现该算法,以提升企业网络管理效率和安全性。尽管存在误报等局限性,但合理配置下,布隆过滤器为企业提供了经济有效的解决方案。
29 8
员工上网行为监控中的Go语言算法:布隆过滤器的应用
|
9天前
|
机器学习/深度学习 前端开发 算法
婚恋交友系统平台 相亲交友平台系统 婚恋交友系统APP 婚恋系统源码 婚恋交友平台开发流程 婚恋交友系统架构设计 婚恋交友系统前端/后端开发 婚恋交友系统匹配推荐算法优化
婚恋交友系统平台通过线上互动帮助单身男女找到合适伴侣,提供用户注册、个人资料填写、匹配推荐、实时聊天、社区互动等功能。开发流程包括需求分析、技术选型、系统架构设计、功能实现、测试优化和上线运维。匹配推荐算法优化是核心,通过用户行为数据分析和机器学习提高匹配准确性。
38 3
|
22天前
|
存储 Go
go语言中映射
go语言中映射
34 11
|
24天前
|
Go
go语言for遍历映射(map)
go语言for遍历映射(map)
33 12