8 种 Java 内存溢出之八 -Kill process or sacrifice child

简介: 8 种 Java 内存溢出之八 -Kill process or sacrifice child

8.1 Kill process or sacrifice child 概述

为了理解这个报错, 我们需要复习一下操作系统基础知识. 正如你所知, 操作系统是建立在进程的概念之上的. 这些过程是由多个内核作业引导的,其中一个以内存杀手 (out of memory killer) 命名的 worker 在这个特殊的情况下是我们感兴趣的。

这个内核作业会在极低的内存条件下消灭您的进程. 当检测到这种情况时,内存杀手就会被激活,并选择一个进程来杀死。使用一组启发式算法对所有进程进行评分,并选择得分最差的一个作为目标。OutOfMemoryError: Kill process or sacrifice child这与我们的 OOM 手册中涉及的其他错误不同,因为它不是由 JVM 触发或代理的,而是构建在操作系统内核中的安全网络。

当可用的虚拟内存 (包括 swap) 被消耗到整个操作系统的稳定性受到威胁的程度时,就会产生 OutOfMemoryError: Kill process or sacrifice child 错误。在这种情况下,内存杀手会选择这个流氓进程并杀死它。

8.2 原因

默认情况下,Linux 内核允许进程请求比当前系统中可用的更多的内存。考虑到大多数进程实际上从未使用它们所分配的所有内存,因此这在现实世界是很有意义的。 最简单的例子就是宽带运营商。他们向所有用户提供了 100Mbit 的下载承诺,远远超过了网络中实际的带宽(超卖)。再次打赌,用户绝不会同时使用他们分配的下载极限值。因此,一个 10Gbit 链接可以成功地服务于多于我们简单的数学算出来的 100 个用户。

这种方法的副作用是可见的,比如某些程序耗尽了系统内存。这可能导致极低的内存状态,没有页 (page) 可以分配到进程。您可能遇到过这样的情况,甚至连根帐户也不能杀死这个讨厌的任务. 为了防止这种情况,这个杀手激活了,并确认把这个流氓进程杀死.

您可以从 这篇 RedHat 文档 中阅读更多关于微调“内存杀手”行为的信息。

现在我们有了背景知识,那么你怎么知道是什么触发了“杀手”,并在凌晨 5 点叫醒了你? 激活的一个常见触发器隐藏在操作系统配置中。当您在 /proc/sys/vm/overcommit_memory 中检查配置时,您有了第一个提示 —— 特定的这个值表明是否允许所有 malloc()调用成功。注意,在 proc 文件系统中参数的路径取决于受更改影响的系统。超限提交配置允许为这个流氓过程分配越来越多的内存,最终可能触发“内存杀手”来完成它想要做的事情。

8.3 示例

当您在 Linux 上编译并启动以下 Java 代码片段时(我使用了最新的稳定 Ubuntu 版本):

package eu.plumbr.demo;
 
public class OOM {
 
public static void main(String[] args) {
    java.util.List<int[]> l = new java.util.ArrayList();
    for (int i = 10000; i<100000; i++) {
        try {
            l.add(new int[100_000_000]);
        } catch (Throwable t) {
            t.printStackTrace();
        }
    }
}
}
JAVA

然后您将在系统日志中看到类似下列的错误 (/var/log/kern.login) 的例子:

Jun  4 07:41:59 plumbr kernel: [70667120.897649] Out of memory: Kill
process 29957 (java) score 366 or sacrifice child
Jun  4 07:41:59 plumbr kernel: [70667120.897701] Killed process
29957 (java) total-vm:2532680kB, anon-rss:1416508kB, file-rss:0kB
MIPSASM

注意,您可能需要调整 swapfile 和堆大小,在我们的测试用例中,我们使用了一个由 -Xmx2g 指定的 2g 堆,并有如下的 swap 配置:

swapoff -a
dd if=/dev/zero of=swapfile bs=1024 count=655360
mkswap swapfile
swapon swapfile
SHELL

8.4 解决方案

有几种方式来解决这类场景. 解决这个问题的第一个也是最直接的方法是将系统迁移到具有更多内存的实例上。

其他的可能性包括 对 OOM 杀手进行微调,在几个小的实例上横向扩展负载,或者减少应用程序的内存需求。

我们不愿意推荐的一个解决方案是增加交换空间。当您回想起 Java 是一种垃圾收集的语言时,这个解决方案似乎就不那么有利可图了. 现代 GC 算法在物理内存中运行效率很高,但是当处理 swap 分配时,效率会受到重创。Swapping 会增加 GC 暂停的长度高达几个数量级,所以在选择到这个解决方案之前,您应该三思而后行。

相关文章
|
22天前
|
存储 Java
深入理解Java虚拟机:JVM内存模型
【4月更文挑战第30天】本文将详细解析Java虚拟机(JVM)的内存模型,包括堆、栈、方法区等部分,并探讨它们在Java程序运行过程中的作用。通过对JVM内存模型的深入理解,可以帮助我们更好地编写高效的Java代码,避免内存溢出等问题。
|
22天前
|
算法 Java Go
Go vs Java:内存管理与垃圾回收机制对比
对比了Go和Java的内存管理与垃圾回收机制。Java依赖JVM自动管理内存,使用堆栈内存并采用多种垃圾回收算法,如标记-清除和分代收集。Go则提供更多的手动控制,内存分配与释放由分配器和垃圾回收器协同完成,使用三色标记算法并发回收。示例展示了Java中对象自动创建和销毁,而Go中开发者需注意内存泄漏。选择语言应根据项目需求和技术栈来决定。
|
2天前
|
Java 缓存 存储
Java内存模型是什么
本文介绍了Java并发编程中重要的Java内存模型(JMM),该模型基于硬件内存模型,旨在解决CPU缓存一致性与处理器重排序问题,确保多线程环境下的原子性、可见性和有序性。文章首先讲解了CPU执行过程中的高速缓存和由此引发的缓存一致性问题,以及处理器的重排序现象。接着,引入了计算机内存模型,它是处理这些问题的操作规范。随后,阐述了Java内存模型,其规定了变量存储在主存,线程有自己的工作区,通过主存实现线程间通信,从而在Java层面保证内存一致性。最后,对比了JMM和计算机内存模型的异同,强调两者作用于不同层次的内存一致性保障。
|
5天前
|
监控 Java 编译器
Java的内存模型与并发控制技术性文章
Java的内存模型与并发控制技术性文章
14 2
|
6天前
|
存储 算法 Java
Java的内存模型与垃圾回收机制
Java的内存模型与垃圾回收机制
|
7天前
|
存储 Java 编译器
Java方法的基本内存原理与代码实例
Java方法的基本内存原理与代码实例
15 0
|
8天前
|
存储 缓存 监控
Java的内存管理
Java的内存管理
19 0
|
9天前
|
存储 Java 开发者
深入理解Java虚拟机:JVM内存模型解析
【5月更文挑战第27天】 在Java程序的运行过程中,JVM(Java Virtual Machine)扮演着至关重要的角色。作为Java语言的核心执行环境,JVM不仅负责代码的执行,还管理着程序运行时的内存分配与回收。本文将深入探讨JVM的内存模型,包括其结构、各部分的作用以及它们之间的相互关系。通过对JVM内存模型的剖析,我们能够更好地理解Java程序的性能特征,并针对性地进行调优,从而提升应用的执行效率和稳定性。
|
9天前
|
Java
<Java SE> 5道递归计算,创建数组,数组遍历,JVM内存分配...
<Java SE> 5道递归计算,创建数组,数组遍历,JVM内存分配
36 2
|
12天前
|
存储 Java 编译器
Java | 如何从内存解析的角度理解“数组名实质是一个地址”?
这篇文章讨论了Java内存的简化结构以及如何解析一维和二维数组的内存分配。在Java中,内存分为栈和堆,栈存储局部变量,堆存储通过`new`关键字创建的对象和数组。方法区包含静态域和常量池。文章通过示例代码解释了一维数组的创建过程,分为声明数组、分配空间和赋值三个步骤,并提供了内存解析图。接着,介绍了二维数组的内存解析,强调二维数组是“数组的数组”,其内存结构中,外层元素存储内层数组的地址。最后,文章提到了默认初始化方式对初始值的影响,并给出了相关测试代码。
19 0