Java的内存模型与垃圾回收机制

简介: Java的内存模型与垃圾回收机制

一、引言

Java作为一种广泛使用的编程语言,其内存管理模型是其独特性和优势之一。Java的内存模型(Java Memory Model, JMM)定义了线程如何与主内存交互以及它们之间如何通信的规则,而垃圾回收(Garbage Collection, GC)机制则负责自动管理Java堆内存中的对象生命周期。本文将深入探讨Java的内存模型和垃圾回收机制,帮助读者更好地理解Java的内存管理。


二、Java内存模型(JMM)

1. 基本概念

Java内存模型是Java虚拟机(JVM)规范中定义的一种内存模型,它描述了Java程序中各种变量(包括实例字段、静态字段和构成数组对象的元素)的访问规则,以及在多线程环境中线程之间如何共享变量。JMM决定了线程之间共享变量的可见性和有序性。


2. 主内存与工作内存

JMM将内存划分为主内存(Main Memory)和工作内存(Working Memory)。主内存是所有线程共享的,用于存储共享变量。工作内存是每个线程私有的,包含了该线程对共享变量的副本以及该线程私有的变量。线程对变量的所有操作(读取、赋值等)都必须在工作内存中进行,然后再将结果刷新到主内存。


3. 可见性与有序性

可见性:一个线程修改了共享变量的值,其他线程能够立即看到这个修改。Java提供了volatile关键字来保证多线程之间变量的可见性。

有序性:即程序执行的顺序按照代码的先后顺序执行。Java编译器和处理器为了提高性能会对指令进行重排序,但JMM会保证单线程内程序的执行结果不被改变,以及多线程之间通过同步互斥来实现有序性。


4. 内存屏障与Happens-Before规则

内存屏障:是一种特殊的指令,用于控制不同线程之间内存访问的顺序。它确保屏障之前的所有操作都执行完成后,屏障之后的操作才能开始执行。

Happens-Before规则:定义了Java程序中两个访问操作之间的偏序关系,如果一个操作的结果对另一个操作是可见的,那么这两个操作之间就存在Happens-Before关系。这些规则是Java内存模型语义的基础,它们确保了程序按照正确的顺序执行。


三、Java垃圾回收机制

1. 垃圾回收概述

Java的垃圾回收机制是Java语言的一大特性,它自动管理内存,程序员无需显式地分配和释放内存。当对象不再被引用时,垃圾回收器会自动回收其占用的内存空间,避免了内存泄漏和内存溢出等问题。


2. 垃圾回收算法

Java中常用的垃圾回收算法包括标记-清除(Mark-Sweep)、复制(Copying)、标记-整理(Mark-Compact)和分代收集(Generational Collection)等。这些算法各有优缺点,适用于不同的场景。

标记-清除:首先标记出所有需要回收的对象,然后统一回收被标记的对象。但这种方式会导致内存碎片化问题。

复制:将内存划分为两个等大的区域,每次只使用其中一个区域,当这一区域的内存用完了,就将还存活的对象复制到另一个区域,然后再清理当前区域。这种方式解决了内存碎片化问题,但内存利用率较低。

标记-整理:标记出所有需要回收的对象,然后让所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存。这种方式解决了内存碎片化问题,也提高了内存利用率。

分代收集:根据对象的生命周期不同,将内存划分为几块,一般是新生代和老年代。新生代中每次垃圾收集时都有大批对象死去,只有少量存活,因此选用复制算法;而老年代中因为对象存活率高、没有额外空间对它进行分配担保,就必须使用标记-清除或者标记-整理算法。


3. 垃圾回收器

Java中提供了多种垃圾回收器,如Serial、Parallel、CMS和G1等。这些回收器采用了不同的垃圾回收算法,适用于不同的场景。程序员可以通过配置JVM参数来选择合适的垃圾回收器,以达到最佳的性能和效率。


4. 垃圾回收调优

垃圾回收调优是Java性能调优的重要部分。通过调整JVM参数、选择合适的垃圾回收器以及优化代码结构等方式,可以提高垃圾回收的效率,减少内存占用和停顿时间,从而提升Java程序的性能和稳定性。


四、总结

Java的内存模型和垃圾回收机制是Java语言的重要特性之一。它们共同构成了Java的内存管理体系,为Java程序提供了高效、稳定的内存管理方案。通过深入理解Java的内存模型和垃圾回收机制,我们可以更好地编写和优化Java程序,提高程序的性能和稳定性。

 

相关文章
|
2月前
|
Arthas 存储 算法
深入理解JVM,包含字节码文件,内存结构,垃圾回收,类的声明周期,类加载器
JVM全称是Java Virtual Machine-Java虚拟机JVM作用:本质上是一个运行在计算机上的程序,职责是运行Java字节码文件,编译为机器码交由计算机运行类的生命周期概述:类的生命周期描述了一个类加载,使用,卸载的整个过类的生命周期阶段:类的声明周期主要分为五个阶段:加载->连接->初始化->使用->卸载,其中连接中分为三个小阶段验证->准备->解析类加载器的定义:JVM提供类加载器给Java程序去获取类和接口字节码数据类加载器的作用:类加载器接受字节码文件。
269 55
|
2月前
|
存储 缓存 Java
【高薪程序员必看】万字长文拆解Java并发编程!(5):深入理解JMM:Java内存模型的三大特性与volatile底层原理
JMM,Java Memory Model,Java内存模型,定义了主内存,工作内存,确保Java在不同平台上的正确运行主内存Main Memory:所有线程共享的内存区域,所有的变量都存储在主存中工作内存Working Memory:每个线程拥有自己的工作内存,用于保存变量的副本.线程执行过程中先将主内存中的变量读到工作内存中,对变量进行操作之后再将变量写入主内存,jvm概念说明主内存所有线程共享的内存区域,存储原始变量(堆内存中的对象实例和静态变量)工作内存。
91 0
|
4月前
|
存储 缓存 算法
JVM简介—1.Java内存区域
本文详细介绍了Java虚拟机运行时数据区的各个方面,包括其定义、类型(如程序计数器、Java虚拟机栈、本地方法栈、Java堆、方法区和直接内存)及其作用。文中还探讨了各版本内存区域的变化、直接内存的使用、从线程角度分析Java内存区域、堆与栈的区别、对象创建步骤、对象内存布局及访问定位,并通过实例说明了常见内存溢出问题的原因和表现形式。这些内容帮助开发者深入理解Java内存管理机制,优化应用程序性能并解决潜在的内存问题。
241 29
JVM简介—1.Java内存区域
|
4月前
|
Java 数据库
【YashanDB知识库】kettle同步大表提示java内存溢出
在数据导入导出场景中,使用Kettle进行大表数据同步时出现“ERROR:could not create the java virtual machine!”问题,原因为Java内存溢出。解决方法包括:1) 编辑Spoon.bat增大JVM堆内存至2GB;2) 优化Kettle转换流程,如调整批量大小、精简步骤;3) 合理设置并行线程数(PARALLELISM参数)。此问题影响所有版本,需根据实际需求调整相关参数以避免内存不足。
|
5月前
|
存储 IDE Java
java设置栈内存大小
在Java应用中合理设置栈内存大小是确保程序稳定性和性能的重要措施。通过JVM参数 `-Xss`,可以灵活调整栈内存大小,以适应不同的应用场景。本文介绍了设置栈内存大小的方法、应用场景和注意事项,希望能帮助开发者更好地管理Java应用的内存资源。
249 4
|
5月前
|
Java Shell 数据库
【YashanDB 知识库】kettle 同步大表提示 java 内存溢出
【问题分类】数据导入导出 【关键字】数据同步,kettle,数据迁移,java 内存溢出 【问题描述】kettle 同步大表提示 ERROR:could not create the java virtual machine! 【问题原因分析】java 内存溢出 【解决/规避方法】 ①增加 JVM 的堆内存大小。编辑 Spoon.bat,增加堆大小到 2GB,如: if "%PENTAHO_DI_JAVA_OPTIONS%"=="" set PENTAHO_DI_JAVA_OPTIONS="-Xms512m" "-Xmx512m" "-XX:MaxPermSize=256m" "-
|
7月前
|
存储 监控 算法
Java内存管理的艺术:深入理解垃圾回收机制####
本文将引领读者探索Java虚拟机(JVM)中垃圾回收的奥秘,解析其背后的算法原理,通过实例揭示调优策略,旨在提升Java开发者对内存管理能力的认知,优化应用程序性能。 ####
116 0
|
4月前
|
存储 算法 Java
G1原理—5.G1垃圾回收过程之Mixed GC
本文介绍了G1的Mixed GC垃圾回收过程,包括并发标记算法详解、三色标记法如何解决错标漏标问题、SATB如何解决错标漏标问题、Mixed GC的过程、选择CollectSet的算法
G1原理—5.G1垃圾回收过程之Mixed GC
|
4月前
|
存储 算法 Java
G1原理—6.G1垃圾回收过程之Full GC
本文详细探讨了G1垃圾回收器对Full GC(FGC)的优化处理,涵盖FGC的前置处理、整体流程及并行化改进。重点分析了传统FGC串行化的局限性以及G1通过Region分区和RSet机制实现并行标记的优势,包括任务窃取提升效率、跨分区压缩以生成空闲Region等技术细节。此外,文章还介绍了G1的新特性——字符串去重优化,通过判断char数组一致性减少重复字符串占用内存,从而提升内存使用效率。总结部分全面回顾了G1在FGC中的各项优化措施及其带来的性能改善。
G1原理—6.G1垃圾回收过程之Full GC
|
4月前
|
存储 算法 Java
G1原理—4.G1垃圾回收的过程之Young GC
本文详细解析了G1垃圾回收器中YGC(Young Generation Collection)的完整流程,包括并行与串行处理阶段。内容涵盖YGC相关参数设置、YGC与Mixed GC及FGC的关系、新生代垃圾回收的具体步骤(如标记存活对象、复制到Survivor区、动态调整Region数量等),以及并行阶段的多线程操作和串行阶段的关键任务(如处理软引用、整理卡表、重构RSet)。
G1原理—4.G1垃圾回收的过程之Young GC