深入浅出堆排序: 高效算法背后的原理与性能

简介: 深入浅出堆排序: 高效算法背后的原理与性能

⛳️ 推荐

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。

📋 前言

  🌈堆排序一个基于二叉堆数据结构的排序算法,其稳定性和排序效率在八大排序中也是名列前茅。

  ⛳️堆我们已经讲解完毕了,今天就来深度了解一下堆排序是怎么实现的以及为什么他那么高效。

  📚本期文章收录在《数据结构&算法》,大家有兴趣可以看看呐

  ⛺️ 欢迎铁汁们 ✔️ 点赞 👍 收藏 ⭐留言 📝!

一、堆排序的思想概念

堆排序可以说是排序算法中比较高效的了,既稳定又高效。既然叫堆排序那么肯定离不来堆,基于二叉树来进行构建:

  • 不知道大家发现过没有堆有一个特性
  • 要不就是最大值(大堆)要不然就是一个最小值(小堆)

而我们吧堆顶最大值或最小值进行 pop删除并取出每次的 最大值或者最小值把这些值存储起来

之后他的数据是不是也排序完了,而我们又是用数组来存储的删除不就是把下标 减减吗?

二、堆排序的两种实现方式

堆排序的核心思想就是利用堆的特性来进行数据的取出每次都是最大值或者最小值,那么我得到一组数据要进行堆排序首先:

  • 这组数据需要时堆才能进行排序,那么我们就要开始建堆就完了。

建堆的方法一共有俩种分别是向下取整和向上取整这里都给大家介绍一下

2.1 向上取整

向上取整就是,把新的数据尾插到堆里面然后把他和父节点进行对比调整:

  • 数组存储这里有一个特点 parent = (child-1)/ 2 ;
  • 父节点等于子节点 -1 除二

📚 代码演示:

//向上调整
void adjustup(HeapTypeData* a, int child)
{
  int parent = (child - 1) / 2;
  while (child > 0)
  {
    //建小堆
    if (a[child] < a[parent])
    {
      Swap(&a[child], &a[parent]);
      child = parent;
      parent = (parent - 1) / 2;
    }
    else
    {
      break;
    }
  }
}

2.2 向下取整

向下取整的思想就是把堆顶数据左右子树的的数值进行对比然后向下进行调整:

  • 🔥 向下调整算法有一个前提:左右子树必须是一个堆,才能调整
  • 这里由于是数组存储的所以堆的左右子树都是
  • child = parent* 2+1;
  • 孩子节点的左节点都等于 父节点

    如果堆顶数据和左右子树对比 ,然后再进行调整数据

📚 代码演示:

//向下调整
void adjustdown(HeapTypeData* a, int n, int parent)
{
  int child = parent* 2+1;
  while (child < n)
  {
    if (child+1 < n && a[child + 1] < a[child])
    {
      child++;
    }
    if (a[child] < a[parent])
    {
      Swap(&a[child], &a[parent]);
      parent = child;
      child = parent*2 +1;
    }
    else
    {
      break;
    }
  }
}

三、堆排序的实现代码

3.1 如何利用向上调整建堆

向上调整的思想大家都懂了,而建堆的话我们可以这样想:

  • 从数据的第一个数每次向上调整这样
  • 当调整到最后一个数的时候前面所有的都是已经调整好的堆

📚 代码演示:

//向上调整
void adjustup(HeapTypeData* a, int child)
{
  int parent = (child - 1) / 2;
  while (child > 0)
  {
    //建小堆
    if (a[child] > a[parent])
    {
      Swap(&a[child], &a[parent]);
      child = parent;
      parent = (parent - 1) / 2;
    }
    else
    {
      break;
    }
  }
}
//向上调整建堆  OR 建小堆降序 
//                建大堆升序
for (int i = 1; i < n; i++)
{
  adjustup(a, i);
}

3.1 如何利用向下调整建堆

利用向下调整建堆的要求是左右俩边都是堆才可以向下调整:

  • 那么我们可以把他分为 分治子问题 先向下调整左右子树的在一部部调整堆顶
  • 而堆的最后一个子树一定是堆

这样我们就可以利用数组存储堆的特性 父节点等于子节点 -1除2

  • parent = (child-1)/ 2 ;
  • 然后再利用循环 减减 把每个子树都调整完到堆顶堆就减好了

📚 代码演示:

//向下调整
void adjustdown(HeapTypeData* a, int n, int parent)
{
  int child = parent* 2+1;
  while (child < n)
  {
    if (child+1 < n && a[child + 1] > a[child])
    {
      child++;
    }
    if (a[child] > a[parent])
    {
      Swap(&a[child], &a[parent]);
      parent = child;
      child = parent*2 +1;
    }
    else
    {
      break;
    }
  }
}
//向上调整建堆  OR 建小堆降序 
//                建大堆升序
for (int i = (n-1-1)/2; i > 0; i--)
{
  adjustdown(a, n, i);
}

3.3 堆建完了如何排序数据

堆我们建完了,排序难道一个个把堆顶数据取出然后再放进去吗? 当然不是排序算法都是在数组的 原本空间上进行排序:

  • 我们的思想还是和删除 POP 一样先把堆顶的数据和堆底进行交换
  • 然后再利用下标减减删除数据,(虚拟删除其实还在)
  • 这样每次最大或者最小的数据都被按规律放在原空间里面了

📚 代码演示:

//开始排序
  int end = n - 1;
  while (end > 0)
  {
    Swap(&a[0], &a[end]);
    adjustdown(a, end, 0);
    end--;
  }

3.4 堆排完整代码

//向上调整
void adjustup(HeapTypeData* a, int child)
{
  int parent = (child - 1) / 2;
  while (child > 0)
  {
    //建小堆
    if (a[child] > a[parent])
    {
      Swap(&a[child], &a[parent]);
      child = parent;
      parent = (parent - 1) / 2;
    }
    else
    {
      break;
    }
  }
}
//向下调整
void adjustdown(HeapTypeData* a, int n, int parent)
{
  int child = parent* 2+1;
  while (child < n)
  {
    if (child+1 < n && a[child + 1] > a[child])
    {
      child++;
    }
    if (a[child] > a[parent])
    {
      Swap(&a[child], &a[parent]);
      parent = child;
      child = parent*2 +1;
    }
    else
    {
      break;
    }
  }
}
void HeapSort(int* a, int n)
{
  //向上调整建堆  OR 建小堆降序 
  //                建大堆升序
  /*for (int i = 1; i < n; i++)
  {
    adjustup(a, i);
  }*/
  for (int i = (n-1-1)/2; i > 0; i--)
  {
    adjustdown(a, n, i);
  }
  //开始排序
  int end = n - 1;
  while (end > 0)
  {
    Swap(&a[0], &a[end]);
    adjustdown(a, end, 0);
    end--;
  }

四、俩种实现方式的效率对比

4.1 向上调整建堆时间复杂度计算

4.2 向下调整建堆时间复杂度计算

4.3 对比结果

建堆思想 时间复杂度
向上调整建堆 O(N * logN)
向下调整建堆 O(N)

🔥 所以我们在进行堆排序的时候一定首先选取向下调整算法时间复杂度更优。

  • 假设有1000万个数据
建堆思想 排序次数
向上调整 1000W*24(约等于 2亿多)
向下调整 1000W

所以我们向下调整的算法是远远大于向上调整的这是为什么呢?

  • 🔥 因为 向下调整最后一层节点多且全部需要调整到第一层(调整h-1次)
  • 🔥 而向下调整 最后一层不需要调整,越是接近底层调整越少

4.4 堆的时间复杂度计算

📝文章结语:

☁️ 以上就是本章的全部内容了,各位铁汁们快去试试吧!

看到这里了还不给博主扣个:
⛳️ 点赞☀️收藏 ⭐️ 关注

💛 💙 💜 ❤️ 💚💓 💗 💕 💞 💘 💖

拜托拜托这个真的很重要!

你们的点赞就是博主更新最大的动力!

有问题可以评论或者私信呢秒回哦。

目录
相关文章
|
1月前
|
存储 机器学习/深度学习 监控
网络管理监控软件的 C# 区间树性能阈值查询算法
针对网络管理监控软件的高效区间查询需求,本文提出基于区间树的优化方案。传统线性遍历效率低,10万条数据查询超800ms,难以满足实时性要求。区间树以平衡二叉搜索树结构,结合节点最大值剪枝策略,将查询复杂度从O(N)降至O(logN+K),显著提升性能。通过C#实现,支持按指标类型分组建树、增量插入与多维度联合查询,在10万记录下查询耗时仅约2.8ms,内存占用降低35%。测试表明,该方案有效解决高负载场景下的响应延迟问题,助力管理员快速定位异常设备,提升运维效率与系统稳定性。
151 4
|
2月前
|
存储 算法 搜索推荐
软考算法破壁战:从二分查找到堆排序,九大排序核心速通指南
专攻软考高频算法,深度解析二分查找、堆排序、快速排序核心技巧,对比九大排序算法,配套动画与真题,7天掌握45%分值模块。
154 1
软考算法破壁战:从二分查找到堆排序,九大排序核心速通指南
|
2月前
|
算法 数据挖掘 异构计算
【多目标优化算法比较】MOFPA、MOFA、MOCS、MOBA、MOHHO五种多目标优化算法性能对比研究(Matlab代码实现)
【多目标优化算法比较】MOFPA、MOFA、MOCS、MOBA、MOHHO五种多目标优化算法性能对比研究(Matlab代码实现)
192 0
【多目标优化算法比较】MOFPA、MOFA、MOCS、MOBA、MOHHO五种多目标优化算法性能对比研究(Matlab代码实现)
机器学习/深度学习 算法 自动驾驶
479 0
|
2月前
|
机器学习/深度学习 算法 搜索推荐
从零开始构建图注意力网络:GAT算法原理与数值实现详解
本文详细解析了图注意力网络(GAT)的算法原理和实现过程。GAT通过引入注意力机制解决了图卷积网络(GCN)中所有邻居节点贡献相等的局限性,让模型能够自动学习不同邻居的重要性权重。
449 0
从零开始构建图注意力网络:GAT算法原理与数值实现详解
|
3月前
|
机器学习/深度学习 算法 文件存储
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
神经架构搜索(NAS)正被广泛应用于大模型及语言/视觉模型设计,如LangVision-LoRA-NAS、Jet-Nemotron等。本文回顾NAS核心技术,解析其自动化设计原理,探讨强化学习、进化算法与梯度方法的应用与差异,揭示NAS在大模型时代的潜力与挑战。
836 6
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
|
3月前
|
传感器 算法 定位技术
KF,EKF,IEKF 算法的基本原理并构建推导出四轮前驱自主移动机器人的运动学模型和观测模型(Matlab代码实现)
KF,EKF,IEKF 算法的基本原理并构建推导出四轮前驱自主移动机器人的运动学模型和观测模型(Matlab代码实现)
129 2
|
3月前
|
机器学习/深度学习 算法 5G
【MUSIC、最大似然与克拉美-罗下界】MUSIC与ESPRIT 算法来估计到达角(AoA),并尝试推导克拉美-罗下界(CRLB)以分析其性能研究(Matlab代码实现)
【MUSIC、最大似然与克拉美-罗下界】MUSIC与ESPRIT 算法来估计到达角(AoA),并尝试推导克拉美-罗下界(CRLB)以分析其性能研究(Matlab代码实现)
163 0
|
3月前
|
算法
离散粒子群算法(DPSO)的原理与MATLAB实现
离散粒子群算法(DPSO)的原理与MATLAB实现
185 0
|
4月前
|
机器学习/深度学习 人工智能 编解码
AI视觉新突破:多角度理解3D世界的算法原理全解析
多视角条件扩散算法通过多张图片输入生成高质量3D模型,克服了单图建模背面细节缺失的问题。该技术模拟人类多角度观察方式,结合跨视图注意力机制与一致性损失优化,大幅提升几何精度与纹理保真度,成为AI 3D生成的重要突破。
398 0

热门文章

最新文章

下一篇
oss云网关配置