Redis数据结构之——ziplist

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: Redis数据结构之——ziplist

写在前面

以下内容是基于Redis 6.2.6 版本整理总结

一、压缩列表(ziplist)

当一个哈希键只包含少量键值对,并且每个键值对的键和值要么是小整数,要么是短字符串,Redis就会采用压缩列表作为哈希键的底层实现。

1.1 压缩列表的构成

压缩列表是Redis为节约内存而开发的,是由一系列特殊编码的连续内存组成。一个压缩列表可以包含任意多个节点,每个节点可以保存一个小整数或者一个短的字符串

ziplist 的结构如下

各字段说明:

  • zlbytes(4 字节): ziplist占用总的字节数
  • zltail(4 字节): ziplist 最后一个 entry 距离起始位置偏移的字节数
  • zllen(2 字节): ziplist 中 entry 的个数
  • zlend(1 字节):结束符(ziplist 以0xFF作为结束)

举个栗子:

说明:ziplist 的总长度为96字节(0x60的十进制),最后一个entry距离ziplist起始位置偏移了75字节(0x4B的十进制),ziplist中此时有3(0x03的十进制)个entry。

entry的结构如下:

各字段说明:

pre_entry_len:上一个entry的长度。占用的字节数取决于上一个节点的长度,如果上一个节点的长度小于254字节,pre_entry_len就占1个字节;如果大于等于254,pre_entry_len就占5个字节,而且,第一个字节会被设置为0xFE(十进制的254)

encoding:记录该节点content属性保存数据的类型及长度。开头说了 ziplist 用来存储小整数或者短的字符串。encoding规则如下:

存储字符串:

encoding的长度有1字节、2字节、和5字节:主要根据高位的00/01/10来区分不同的编码。

存储小整数:

1.2 ziplist源码分析
1.2.1 创建ziplist

redis用ziplistNew() 函数来创建ziplist。采用zmalloc分配空间,初始化ziplist的 header 和 end,共 11 个字节。

#define ZIPLIST_HEADER_SIZE     (sizeof(uint32_t)*2+sizeof(uint16_t))
#define ZIPLIST_END_SIZE        (sizeof(uint8_t))
/* Create a new empty ziplist. */
unsigned char *ziplistNew(void) {
    // bytes = 4 + 4 + 2 + 1 = 11 字节
    unsigned int bytes = ZIPLIST_HEADER_SIZE+ZIPLIST_END_SIZE;
    unsigned char *zl = zmalloc(bytes);
    // 初始化 zlbytes = 11
    ZIPLIST_BYTES(zl) = intrev32ifbe(bytes);
    // 初始化 zltail = 10,此时还没有entry
    ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(ZIPLIST_HEADER_SIZE);
    // 初始化 zllen = 10
    ZIPLIST_LENGTH(zl) = 0;
    // 初始化 zlend = 255
    zl[bytes-1] = ZIP_END;
    return zl;
}

1.2.2 ziplist的插入

__ziplistInsert() 函数,将新节点查到给定节点之后。

/* Insert item at "p". */
unsigned char *__ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) {
    size_t curlen = intrev32ifbe(ZIPLIST_BYTES(zl)), reqlen, newlen;
    unsigned int prevlensize, prevlen = 0;
    size_t offset;
    int nextdiff = 0;
    unsigned char encoding = 0;
    long long value = 123456789; /* initialized to avoid warning. Using a value
                                    that is easy to see if for some reason
                                    we use it uninitialized. */
    zlentry tail;
    /* Find out prevlen for the entry that is inserted. */
    if (p[0] != ZIP_END) {
        ZIP_DECODE_PREVLEN(p, prevlensize, prevlen);
    } else {
        unsigned char *ptail = ZIPLIST_ENTRY_TAIL(zl);
        if (ptail[0] != ZIP_END) {
            prevlen = zipRawEntryLengthSafe(zl, curlen, ptail);
        }
    }
    /* See if the entry can be encoded */
    if (zipTryEncoding(s,slen,&value,&encoding)) {
        /* 'encoding' is set to the appropriate integer encoding */
        reqlen = zipIntSize(encoding);
    } else {
        /* 'encoding' is untouched, however zipStoreEntryEncoding will use the
         * string length to figure out how to encode it. */
        reqlen = slen;
    }
    /* We need space for both the length of the previous entry and
     * the length of the payload. */
    reqlen += zipStorePrevEntryLength(NULL,prevlen);
    reqlen += zipStoreEntryEncoding(NULL,encoding,slen);
    /* When the insert position is not equal to the tail, we need to
     * make sure that the next entry can hold this entry's length in
     * its prevlen field. */
    int forcelarge = 0;
    nextdiff = (p[0] != ZIP_END) ? zipPrevLenByteDiff(p,reqlen) : 0;
    if (nextdiff == -4 && reqlen < 4) {
        nextdiff = 0;
        forcelarge = 1;
    }
    /* Store offset because a realloc may change the address of zl. */
    offset = p-zl;
    newlen = curlen+reqlen+nextdiff;
    zl = ziplistResize(zl,newlen);
    p = zl+offset;
    /* Apply memory move when necessary and update tail offset. */
    if (p[0] != ZIP_END) {
        /* Subtract one because of the ZIP_END bytes */
        memmove(p+reqlen,p-nextdiff,curlen-offset-1+nextdiff);
        /* Encode this entry's raw length in the next entry. */
        if (forcelarge)
            zipStorePrevEntryLengthLarge(p+reqlen,reqlen);
        else
            zipStorePrevEntryLength(p+reqlen,reqlen);
        /* Update offset for tail */
        ZIPLIST_TAIL_OFFSET(zl) =
            intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+reqlen);
        /* When the tail contains more than one entry, we need to take
         * "nextdiff" in account as well. Otherwise, a change in the
         * size of prevlen doesn't have an effect on the *tail* offset. */
        assert(zipEntrySafe(zl, newlen, p+reqlen, &tail, 1));
        if (p[reqlen+tail.headersize+tail.len] != ZIP_END) {
            ZIPLIST_TAIL_OFFSET(zl) =
                intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+nextdiff);
        }
    } else {
        /* This element will be the new tail. */
        ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(p-zl);
    }
    /* When nextdiff != 0, the raw length of the next entry has changed, so
     * we need to cascade the update throughout the ziplist */
    if (nextdiff != 0) {
        offset = p-zl;
        zl = __ziplistCascadeUpdate(zl,p+reqlen);
        p = zl+offset;
    }
    /* Write the entry */
    p += zipStorePrevEntryLength(p,prevlen);
    p += zipStoreEntryEncoding(p,encoding,slen);
    if (ZIP_IS_STR(encoding)) {
        memcpy(p,s,slen);
    } else {
        zipSaveInteger(p,value,encoding);
    }
    ZIPLIST_INCR_LENGTH(zl,1);
    return zl;
}

二、总结

  1. ziplist是Redis为了节约内存而实现的一种顺序型数据结构
  2. 压缩列表中的节点用来存储较短的字符串或小整数
  3. 添加和删除节点可能会引发连锁更新,但这种概率很低

文章参考与<零声教育>的C/C++linux服务期高级架构系统教程学习

相关文章
|
2月前
|
消息中间件 缓存 NoSQL
Redis各类数据结构详细介绍及其在Go语言Gin框架下实践应用
这只是利用Go语言和Gin框架与Redis交互最基础部分展示;根据具体业务需求可能需要更复杂查询、事务处理或订阅发布功能实现更多高级特性应用场景。
273 86
|
2月前
|
存储 消息中间件 NoSQL
Redis数据结构:别小看这5把“瑞士军刀”,用好了性能飙升!
Redis提供5种基础数据结构及多种高级结构,如String、Hash、List、Set、ZSet,底层通过SDS、跳表等实现高效操作。灵活运用可解决缓存、计数、消息队列、排行榜等问题,结合Bitmap、HyperLogLog、GEO更可应对签到、UV统计、地理位置等场景,是高性能应用的核心利器。
|
2月前
|
存储 缓存 NoSQL
Redis基础命令与数据结构概览
Redis是一个功能强大的键值存储系统,提供了丰富的数据结构以及相应的操作命令来满足现代应用程序对于高速读写和灵活数据处理的需求。通过掌握这些基础命令,开发者能够高效地对Redis进行操作,实现数据存储和管理的高性能方案。
114 12
|
2月前
|
存储 消息中间件 NoSQL
【Redis】常用数据结构之List篇:从常用命令到典型使用场景
本文将系统探讨 Redis List 的核心特性、完整命令体系、底层存储实现以及典型实践场景,为读者构建从理论到应用的完整认知框架,助力开发者在实际业务中高效运用这一数据结构解决问题。
|
2月前
|
存储 缓存 NoSQL
【Redis】 常用数据结构之String篇:从SET/GET到INCR的超全教程
无论是需要快速缓存用户信息,还是实现高并发场景下的精准计数,深入理解String的特性与最佳实践,都是提升Redis使用效率的关键。接下来,让我们从基础命令开始,逐步揭开String数据结构的神秘面纱。
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
1013 9
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
287 59
|
5月前
|
编译器 C语言 C++
栈区的非法访问导致的死循环(x64)
这段内容主要分析了一段C语言代码在VS2022中形成死循环的原因,涉及栈区内存布局和数组越界问题。代码中`arr[15]`越界访问,修改了变量`i`的值,导致`for`循环条件始终为真,形成死循环。原因是VS2022栈区从低地址到高地址分配内存,`arr`数组与`i`相邻,`arr[15]`恰好覆盖`i`的地址。而在VS2019中,栈区先分配高地址再分配低地址,因此相同代码表现不同。这说明编译器对栈区内存分配顺序的实现差异会导致程序行为不一致,需避免数组越界以确保代码健壮性。
117 0
栈区的非法访问导致的死循环(x64)
232.用栈实现队列,225. 用队列实现栈
在232题中,通过两个栈(`stIn`和`stOut`)模拟队列的先入先出(FIFO)行为。`push`操作将元素压入`stIn`,`pop`和`peek`操作则通过将`stIn`的元素转移到`stOut`来实现队列的顺序访问。 225题则是利用单个队列(`que`)模拟栈的后入先出(LIFO)特性。通过多次调整队列头部元素的位置,确保弹出顺序符合栈的要求。`top`操作直接返回队列尾部元素,`empty`判断队列是否为空。 两题均仅使用基础数据结构操作,展示了栈与队列之间的转换逻辑。
|
10月前
|
存储 C语言 C++
【C++数据结构——栈与队列】顺序栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现顺序栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 1.初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储
500 77

热门文章

最新文章

下一篇
oss云网关配置