Linux内核中常用的C语言技巧(一)

简介: Linux内核中常用的C语言技巧(一)

前言

Linux内核是基于C语言编写的,熟练掌握C语言是深入学习Linux内核的基本要求。

GNU C语言的扩展

GCC的C编译器除了支持ANSI C标准之外,还对C语言进行了很多的扩充。

这些扩充对代码优化、目标代码布局以及安全检查等方面提供了很强的支持,因此支持GNU扩展的C语言称为GNU C语言

Linux内核采用GCC编译器,所以Linux内核的代码自然使用了很多GCC的新扩充特性。

本章介绍一些GCC C语言扩充的新特性,希望读者在学习Linux内核时特别留意。

(1)语句表达式

在GNU C语言中,括号里的复合语句可以看作一个表达式,称为语句表达式。

在一个语句表达式里,可以使用循环、跳转和局部变量等。这个特性通常用在宏定义中,可以让宏定义变得更安全,如比较两个值的大小。

#define max(a,b) ((a) > (b) ? (a) : (b))

上述代码会导致安全问题,a和b有可能会计算两次,比如a传入i++,b传入j++。在GNU C语言中,如果知道a和b的类型,可以这样写这个宏。

#define maxint(a,b) \
          ({int _a = (a), _b = (b); _a > _b ? _a : _b; })

如果你不知道a和b的类型,还可以使用typeof类转换宏。

<include/linux/kernel.h>#define min(x, y) ({        \
typeof(x) _min1 = (x);      \
typeof(y) _min2 = (y);      \
(void) (&_min1 == &_min2);    \
_min1 < _min2 ? _min1 : _min2; })

typeof也是GNU C语言的一个扩充用法,可以用来构造新的类型,通常和语句表达式一起使用。

下面是一些例子。

typeof (*x) y;
typeof (*x) z[4];
typeof (typeof (char *)[4]) m;
  • 第一句声明y是x指针指向的类型。
  • 第二句声明z是一个数组,其中数组的类型是x指针指向的类型。
  • 第三句声明m是一个指针数组,和char*m[4]声明是一样的。

(2)零长数组

GNU C语言允许使用变长数组,这在定义数据结构时非常有用。

<mm/percpu.c>
struct pcpu_chunk {
struct list_head  list;
unsigned long    populated[];  /* 变长数组 */};

数据结构最后一个元素被定义为零长度数组,不占结构体空间

这样,我们可以根据对象大小动态地分配结构的大小。

struct line {
int length;
char contents[0];
};
struct line *thisline = malloc(sizeof(struct line) +this_length);
thisline->length = this_length;

如上例所示,struct line数据结构定义了一个int length变量和一个变长数组contents[0],这个struct line数据结构的大小只包含int类型的大小,不包含contents的大小,也就是sizeof (struct line) =sizeof (int)。

创建结构体对象时,可根据实际的需要指定这个可变长数组的长度,并分配相应的空间,如上述实例代码分配了this_length 字节的内存,并且可以通过contents[index]来访问第index个地址的数据

(3)case范围

GNU C语言支持指定一个case的范围作为一个标签,如:

case low ...high:
case 'A' ...'Z':

这里low到high表示一个区间范围,在ASCII字符代码中也非常有用。下面是Linux内核中的代码例子。

<arch/x86/platform/uv/tlb_uv.c>
static int local_atoi(const char *name)
{
int val = 0;
for (;; name++) {
switch (*name) {
case '0' ...'9':
val = 10*val+(*name-'0');
break;
default:
return val;
}
}
}

另外,还可以用整形数来表示范围,但是这里需要注意在“…”两边有空格,否则编译会出错。

<drivers/usb/gadget/udc/at91_udc.c>
static int at91sam9261_udc_init(struct at91_udc *udc)
{
for (i = 0; i < NUM_ENDPOINTS; i++) {
ep = &udc->ep[i];
switch (i) {
case 0:
ep->maxpacket = 8;
break;
case 1 ...3:
ep->maxpacket = 64;
break;
case 4 ...5:
ep->maxpacket = 256;
break;
}
}
}

(4)标号元素

标准C语言要求数组或结构体初始化值必须以固定顺序出现。但GNU C语言可以通过指定索引或结构体成员名来初始化,不必按照原来的固定顺序进行初始化。

结构体成员的初始化在 Linux 内核中经常使用,如在设备驱动中初始化 file_operations数据结构。下面是Linux内核中的一个代码例子。

<drivers/char/mem.c>
static const struct file_operations zero_fops = {
.llseek      = zero_lseek,
.read        = new_sync_read,
.write       = write_zero,
.read_iter     = read_iter_zero,
.aio_write     = aio_write_zero,
.mmap        = mmap_zero,
};

如上述代码中的zero_fops的成员llseek初始化为zero_lseek函数,read成员初始化为new_sync_read函数,依次类推。当file_operations数据结构的定义发生变化时,这种初始化方法依然能保证已知元素的正确性,对于未初始化成员的值为0或者NULL。

(5)可变参数宏

在GNU C语言中,宏可以接受可变数目的参数,这主要运用在输出函数里。

<include/linux/printk.h>
#define pr_debug(fmt, ...) \
dynamic_pr_debug(fmt, ##__VA_ARGS__)

“…”代表一个可以变化的参数表,“VA_ARGS”是编译器保留字段,预处理时把参数传递给宏。当宏的调用展开时,实际参数就传递给dynamic_pr_debug函数了。

(6)函数属性

GNU C语言允许声明

  • 函数属性(Function Attribute)、
  • 变量属性(Variable Attribute)和
  • 类型属性(Type Attribute),

以便编译器进行特定方面的优化和更仔细的代码检查。特殊属性语法格式为:

__attribute__ ((attribute-list))

GNU C语言里定义的函数属性有很多,如noreturn、format以及const等。

此外,还可以定义一些和处理器体系结构相关的函数属性,如ARM体系结构中可以定义interrupt、isr等属性,有兴趣的读者可以阅读GCC的相关文档。

下面是Linux内核中使用format属性的一个例子。

<drivers/staging/lustru/include/linux/libcfs/>
int libcfs_debug_msg(struct libcfs_debug_msg_data *msgdata,const char *format1, ...)
__attribute__ ((format (printf, 2, 3)));

libcfs_debug_msg()函数里声明了一个format函数属性,它会告诉编译器按照printf的参数表的格式规则对该函数参数进行检查。

  • 数字2表示第二个参数为格式化字符串,
  • 数字3表示参数“…”里的第一个参数在函数参数总数中排在第几个。

noreturn属性通知编译器,该函数从不返回值,这让编译器消除了不必要的警告信息。比如die函数,该函数不会返回。

void __attribute__((noreturn)) die(void);

const 属性会让编译器只调用该函数一次,以后再调用时只需要返回第一次结果即可,从而提高效率。

static inline u32 __attribute_const__read_cpuid_cachetype(void)
{
return read_cpuid(CTR_EL0);
}

Linux还有一些其他的函数属性,被定义在compiler-gcc.h文件中。

#define __pure           
__attribute__((pure))
#define __aligned(x)       
__attribute__((aligned(x)))
#define __printf(a, b)      
__attribute__((format(printf, a, b)))
#define __scanf(a, b)      
__attribute__((format(scanf, a, b)))
#define noinline         
__attribute__((noinline))
#define __attribute_const__   
__attribute__((__const__))
#define __maybe_unused      
__attribute__((unused))
#define __always_unused     
__attribute__((unused))

(7)变量属性和类型属性

变量属性可以对变量或结构体成员进行属性设置。类型属性常见的属性有 alignment、packed和sections等。

alignment属性规定变量或者结构体成员的最小对齐格式,以字节为单位。

struct qib_user_info {
__u32 spu_userversion;
__u64 spu_base_info;
} __aligned(8);

在这个例子中,编译器以8字节对齐的方式来分配qib_user_info这个数据结构。

packed属性可以使变量或者结构体成员使用最小的对齐方式,对变量是以字节对齐,对域是以位对齐。

struct test{
char a;
int x[2] __attribute__ ((packed));
};

x成员使用了packed属性,它会存储在变量a后面,所以这个结构体一共占用9字节。

(8)内建函数

GNU C语言提供一系列内建函数进行优化,这些内建函数以“builtin”作为函数名前缀。

下面介绍Linux内核常用的一些内建函数。

  • __builtin_constant_p(x):判断x是否在编译时就可以被确定为常量。如果x为常量,该函数返回1,否则返回0。
#define __swab16(x)        \
(__builtin_constant_p((__u16)(x)) ?  \
___constant_swab16(x) :      \
__fswab16(x))
  • __builtin_expect(exp, c):这里的意思是exp==c的概率很大,用来引导GCC编译器进行条件分支预测。开发人员知道最可能执行哪个分支,并将最有可能执行的分支告诉编译器,让编译器优化指令序列,使指令尽可能地顺序执行,从而提高CPU预取指令的正确率。
#define LIKELY(x) __builtin_expect(!!(x), 1) //x很可能为真
#define UNLIKELY(x) __builtin_expect(!!(x), 0) //x很可能为假
  • __builtin_prefetch(const void *addr, int rw, int locality):主动进行数据预取,在使用地址addr的值之前就把其值加载到cache中,减少读取的延迟,从而提高性能。该函数可以接受3个参数:
  • 第一个参数addr表示要预取数据的地址;
  • 第二个参数rw表示读写属性,1表示可写,0表示只读;
  • 第三个参数locality表示数据在cache中的时间局部性,其中0表示读取完addr的之后不用保留在cache中,而1~3表示时间局部性逐渐增强。

如下面的prefetch()和prefetchw()函数的实现。

<include/linux/prefetch.h>
#define prefetch(x) __builtin_prefetch(x)
#define prefetchw(x) __builtin_prefetch(x,1)

下面是使用prefetch()函数进行优化的一个例子。

<mm/page_alloc.c>
void __init __free_pages_bootmem(struct page *page,unsigned int order)
{
unsigned int nr_pages = 1 << order;
struct page *p = page;
unsigned int loop;
prefetchw(p);
for (loop = 0; loop < (nr_pages - 1); loop++, p++) 
{
prefetchw(p + 1);
__ClearPageReserved(p);
set_page_count(p, 0);
}
}

在处理struct page数据之前通过prefetchw()预取到cache中,从而提升性能。

(9)asmlinkage

在标准C语言中,函数的形参在实际传入参数时会涉及参数存放问题。对于x86结构,函数参数和局部变量被一起分配到函数的局部堆栈里。

<arch/x86/include/asm/linkage.h>
#define asmlinkage CPP_ASMLINKAGE __attribute__((regparm(0)))

attribute((regparm(0))):告诉编译器该函数不需要通过任何寄存器来传递参数,只通过堆栈来传递。

对于ARM来说,函数参数的传递有一套ATPCS标准,即通过寄存器来传递。ARM中的R0~R4寄存器存放传入参数,当参数超过5个时,多余的参数被存放在局部堆栈中。所以,ARM平台没有定义asmlinkage

<include/linux/linkage.h>
#define asmlinkage CPP_ASMLINKAGE
#define asmlinkage CPP_ASMLINKAGE

(10)UL

在Linux内核代码中,我们经常会看到一些数字的定义使用了UL后缀修饰。

数字常量会被隐形定义为int类型,两个int类型相加的结果可能会发生溢出,因此使用UL强制把int类型数据转换为unsigned long类型,这是为了保证运算过程不会因为int的位数不同而导致溢出。

  • 1 :表示有符号整型数字1
  • 1UL:表示无符号长整型数字1

参考资料

《奔跑吧Linux内核》

目录
相关文章
|
2天前
|
Ubuntu Linux 开发者
Ubuntu20.04搭建嵌入式linux网络加载内核、设备树和根文件系统
使用上述U-Boot命令配置并启动嵌入式设备。如果配置正确,设备将通过TFTP加载内核和设备树,并通过NFS挂载根文件系统。
30 15
|
28天前
|
算法 Linux
深入探索Linux内核的内存管理机制
本文旨在为读者提供对Linux操作系统内核中内存管理机制的深入理解。通过探讨Linux内核如何高效地分配、回收和优化内存资源,我们揭示了这一复杂系统背后的原理及其对系统性能的影响。不同于常规的摘要,本文将直接进入主题,不包含背景信息或研究目的等标准部分,而是专注于技术细节和实际操作。
|
28天前
|
存储 缓存 网络协议
Linux操作系统的内核优化与性能调优####
本文深入探讨了Linux操作系统内核的优化策略与性能调优方法,旨在为系统管理员和高级用户提供一套实用的指南。通过分析内核参数调整、文件系统选择、内存管理及网络配置等关键方面,本文揭示了如何有效提升Linux系统的稳定性和运行效率。不同于常规摘要仅概述内容的做法,本摘要直接指出文章的核心价值——提供具体可行的优化措施,助力读者实现系统性能的飞跃。 ####
|
29天前
|
监控 算法 Linux
Linux内核锁机制深度剖析与实践优化####
本文作为一篇技术性文章,深入探讨了Linux操作系统内核中锁机制的工作原理、类型及其在并发控制中的应用,旨在为开发者提供关于如何有效利用这些工具来提升系统性能和稳定性的见解。不同于常规摘要的概述性质,本文将直接通过具体案例分析,展示在不同场景下选择合适的锁策略对于解决竞争条件、死锁问题的重要性,以及如何根据实际需求调整锁的粒度以达到最佳效果,为读者呈现一份实用性强的实践指南。 ####
|
29天前
|
缓存 监控 网络协议
Linux操作系统的内核优化与实践####
本文旨在探讨Linux操作系统内核的优化策略与实际应用案例,深入分析内核参数调优、编译选项配置及实时性能监控的方法。通过具体实例讲解如何根据不同应用场景调整内核设置,以提升系统性能和稳定性,为系统管理员和技术爱好者提供实用的优化指南。 ####
|
1月前
|
负载均衡 算法 Linux
深入探索Linux内核调度机制:公平与效率的平衡####
本文旨在剖析Linux操作系统内核中的进程调度机制,特别是其如何通过CFS(完全公平调度器)算法实现多任务环境下资源分配的公平性与系统响应速度之间的微妙平衡。不同于传统摘要的概览性质,本文摘要将直接聚焦于CFS的核心原理、设计目标及面临的挑战,为读者揭开Linux高效调度的秘密。 ####
37 3
|
2月前
|
负载均衡 算法 Linux
深入探索Linux内核调度器:公平与效率的平衡####
本文通过剖析Linux内核调度器的工作机制,揭示了其在多任务处理环境中如何实现时间片轮转、优先级调整及完全公平调度算法(CFS),以达到既公平又高效地分配CPU资源的目标。通过对比FIFO和RR等传统调度策略,本文展示了Linux调度器如何在复杂的计算场景下优化性能,为系统设计师和开发者提供了宝贵的设计思路。 ####
43 6
|
1月前
|
消息中间件 安全 Linux
深入探索Linux操作系统的内核机制
本文旨在为读者提供一个关于Linux操作系统内核机制的全面解析。通过探讨Linux内核的设计哲学、核心组件、以及其如何高效地管理硬件资源和系统操作,本文揭示了Linux之所以成为众多开发者和组织首选操作系统的原因。不同于常规摘要,此处我们不涉及具体代码或技术细节,而是从宏观的角度审视Linux内核的架构和功能,为对Linux感兴趣的读者提供一个高层次的理解框架。
|
2月前
|
缓存 网络协议 Linux
深入探索Linux操作系统的内核优化策略####
本文旨在探讨Linux操作系统内核的优化方法,通过分析当前主流的几种内核优化技术,结合具体案例,阐述如何有效提升系统性能与稳定性。文章首先概述了Linux内核的基本结构,随后详细解析了内核优化的必要性及常用手段,包括编译优化、内核参数调整、内存管理优化等,最后通过实例展示了这些优化技巧在实际场景中的应用效果,为读者提供了一套实用的Linux内核优化指南。 ####
51 1
|
2月前
|
算法 前端开发 Linux
深入理解Linux内核调度器:CFS与实时性的平衡####
本文旨在探讨Linux操作系统的核心组件之一——完全公平调度器(CFS)的工作原理,分析其在多任务处理环境中如何实现进程间的公平调度,并进一步讨论Linux对于实时性需求的支持策略。不同于传统摘要仅概述内容要点,本部分将简要预览CFS的设计哲学、核心算法以及它是如何通过红黑树数据结构来维护进程执行顺序,同时触及Linux内核为满足不同应用场景下的实时性要求而做出的权衡与优化。 ####