使用原生JDBC动态解析并获取表格列名和数据

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 使用原生JDBC动态解析并获取表格列名和数据

应用场景

查询某张表,对于返回的执行结果,咱们并不需要知道他有哪些字段,字段名叫啥,直接通过原生JDBC动态的获取列名以及对应的数据。

其实就有点像遍历map集合,并不需要知道key叫啥,一样可以遍历出来:

Map<String,Object> map = Maps.newHashMap();
for (Map.Entry<String, Object> entry : map.entrySet()) {
    System.out.println(entry.getKey() + " : " + entry.getValue());
}

目标

数据库查询出来的结果,存放到一个List>集合中,方便后续批量将该集合的数据插入到其他地方

整干货

private List<Map<String, Object>> executeQuery(String sqlStr,String url,String username,String password) {
    Connection connection = DriverManager.getConnection(url, username, password);
        Statement statement = null;
        ResultSet resultSet = null;
        List<Map<String, Object>> resultList = new ArrayList<Map<String, Object>>();
        try {
            statement = connection.createStatement();
            resultSet = statement.executeQuery(sqlStr);
            final ResultSetMetaData rsmd = resultSet.getMetaData();
            final String[] columnName = new String[rsmd.getColumnCount()];
            for (int i = 1; i <= rsmd.getColumnCount(); ++i) {
                columnName[i - 1] = rsmd.getColumnLabel(i);
            }
            while (resultSet.next()) {
                LinkedHashMap<String, Object> map = new LinkedHashMap<String, Object>();
                for (int j = 1; j <= rsmd.getColumnCount(); ++j) {
                    if (resultSet.getObject(j) != null && !resultSet.getObject(j).equals("")) {
                        String columnData = resultSet.getObject(j).toString().trim();
                        map.put(columnName[j - 1], columnData);
                    }
                    else {
                        map.put(columnName[j - 1], "");
                    }
                }
                resultList.add(map);
            }
        } catch (SQLException e) {
            logger.error("SQL语句执行失败",e);
        }finally {
            if( null != resultSet ) {
                resultSet.close();
            }
            if( null != statement ) {
                statement.close();
            }
            if( null != connection ) {
                connection .close();
            }
        }
        return resultList;
    }


相关文章
|
1月前
|
人工智能 自然语言处理 前端开发
SpringBoot + 通义千问 + 自定义React组件:支持EventStream数据解析的技术实践
【10月更文挑战第7天】在现代Web开发中,集成多种技术栈以实现复杂的功能需求已成为常态。本文将详细介绍如何使用SpringBoot作为后端框架,结合阿里巴巴的通义千问(一个强大的自然语言处理服务),并通过自定义React组件来支持服务器发送事件(SSE, Server-Sent Events)的EventStream数据解析。这一组合不仅能够实现高效的实时通信,还能利用AI技术提升用户体验。
166 2
|
26天前
|
自然语言处理 数据可视化 前端开发
从数据提取到管理:合合信息的智能文档处理全方位解析【合合信息智能文档处理百宝箱】
合合信息的智能文档处理“百宝箱”涵盖文档解析、向量化模型、测评工具等,解决了复杂文档解析、大模型问答幻觉、文档解析效果评估、知识库搭建、多语言文档翻译等问题。通过可视化解析工具 TextIn ParseX、向量化模型 acge-embedding 和文档解析测评工具 markdown_tester,百宝箱提升了文档处理的效率和精确度,适用于多种文档格式和语言环境,助力企业实现高效的信息管理和业务支持。
3987 5
从数据提取到管理:合合信息的智能文档处理全方位解析【合合信息智能文档处理百宝箱】
|
15天前
|
存储 分布式计算 Java
存算分离与计算向数据移动:深度解析与Java实现
【11月更文挑战第10天】随着大数据时代的到来,数据量的激增给传统的数据处理架构带来了巨大的挑战。传统的“存算一体”架构,即计算资源与存储资源紧密耦合,在处理海量数据时逐渐显露出其局限性。为了应对这些挑战,存算分离(Disaggregated Storage and Compute Architecture)和计算向数据移动(Compute Moves to Data)两种架构应运而生,成为大数据处理领域的热门技术。
38 2
|
21天前
|
JavaScript API 开发工具
<大厂实战场景> ~ Flutter&鸿蒙next 解析后端返回的 HTML 数据详解
本文介绍了如何在 Flutter 中解析后端返回的 HTML 数据。首先解释了 HTML 解析的概念,然后详细介绍了使用 `http` 和 `html` 库的步骤,包括添加依赖、获取 HTML 数据、解析 HTML 内容和在 Flutter UI 中显示解析结果。通过具体的代码示例,展示了如何从 URL 获取 HTML 并提取特定信息,如链接列表。希望本文能帮助你在 Flutter 应用中更好地处理 HTML 数据。
101 1
|
5天前
|
数据采集 存储 自然语言处理
基于Qwen2.5的大规模ESG数据解析与趋势分析多Agent系统设计
2022年中国上市企业ESG报告数据集,涵盖制造、能源、金融、科技等行业,通过Qwen2.5大模型实现报告自动收集、解析、清洗及可视化生成,支持单/多Agent场景,大幅提升ESG数据分析效率与自动化水平。
|
1月前
|
数据采集 XML 前端开发
Jsoup在Java中:解析京东网站数据
Jsoup在Java中:解析京东网站数据
|
21天前
|
JSON 前端开发 JavaScript
API接口商品详情接口数据解析
商品详情接口通常用于提供特定商品的详细信息,这些信息比商品列表接口中的信息更加详细和全面。以下是一个示例的JSON数据格式,用于表示一个商品详情API接口的响应。这个示例假定API返回一个包含商品详细信息的对象。
|
1月前
|
API
Vue3组件通信全解析:利用props、emit、provide/inject跨层级传递数据,expose与ref实现父子组件方法调用
Vue3组件通信全解析:利用props、emit、provide/inject跨层级传递数据,expose与ref实现父子组件方法调用
439 0
|
1月前
|
前端开发 算法 JavaScript
无界SaaS模式深度解析:算力算法、链接力、数据确权制度
私域电商的无界SaaS模式涉及后端开发、前端开发、数据库设计、API接口、区块链技术、支付和身份验证系统等多个技术领域。本文通过简化框架和示例代码,指导如何将核心功能转化为技术实现,涵盖用户管理、企业店铺管理、数据流量管理等关键环节。
|
1月前
|
SQL 分布式计算 关系型数据库
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
86 0

推荐镜像

更多
下一篇
无影云桌面