根据个体学习器生成方式的不同,目前集成学习的实现方式主要分为两种,一种是 Bagging 算法为代表的并行式集成学习方法,其中最典型的应用当数“随机森林算法”;另一种是以 Boosting 算法为代表的串行式集成学习方法,其中应用频率较高的有两个 AdaBoost 算法和 XGBoost 算法。除上述两种主要的方法外,还有一种 Stacking 分层模型集成学习算法。
1) Bagging算法
Bagging 算法又称为“装袋算法”最初由 Leo Breiman 于 1996 年提出,它是并行式学习的典型代表,该算法主要是从数据层面上进行设计。并联结构中的每个学习器所 使用的数据集均采用放回重采样的方式生成,也就是说,每个学习器生成训练集时,每个数据样本都有相同的被采样概率。训练完成后,Bagging 采用投票的方式进行预测。
通过放回重采样的方式来构建样本量相等、且相互独立的数据集,从而在同一算法中训练出不同的模型。Bagging 算法的集成策略比较简单,对于分类问题,一般通过投票法,以多数模型预测结果为最终结果;而对于回归问题,一般采用算术平均法,对所有模型的预测结果做算术平均得到最终结果。
2) Boosting算法
与 Bagging 算法相比,Boosting 是一种串行式集成学习算法,该算法基于错误来提升模型的性能,根据前面分类器分类错误的样本,调整训练集中各个样本的权重来重新构建分类器。
Boosting 可以组合多个弱学习器来形成一个强学习器,从而在整体上提高模型预测的准确率。在模型训练过程中,Boosting 算法总是更加关注被错误分类的样本,首先对于第一个弱学习器预测发生错误的数据,在后续训练中提高其权值,而正确预测的数据则降低其权值,然后基于调整权值后的训练集来训练第二个学习器,如此重复进行,直到训练完成所有学习器,最终将所有弱学习器通过集成策略进行整合(比如加权法),生成一个强学习器。
Boosting 算法的训练过程是呈阶梯状的,后一个学习器会在前一个学习器的基础上进行学习,最终以某种方式进行综合,比如加权法,对所有模型的预测结果进行加权来产生最终的结果。
3) Stacking算法
相比于前两种算法,Stacking 集成学习算法要更为复杂一些,该算法是一种分层模型框架,由 Wolpert 于1992 年提出。
Stacking 算法可以分为多层,但通常情况下分为两层,第一层还是由若干个弱学习器组成,当原始训练集经过第一层后,会输出各种弱学习器的预测值,然后将预测结果继续向下一层传递,第二层通常只有一个机器学习模型,该层对第一层的各种预测值和真实值进行训练,从而得到一个集成模型,该模型将根据第一层的预测结果,给出最终的预测结果。
集成学习思想在机器学习算法中应用广泛,它对于提升模型预测准确率,有着不可忽视的作用。如果大家对于集成学习感兴趣的话,可以自己花点时间研究一下,相信您一定会收获满满。